Editorial

1159 This Week in *Science*

Letters

1161 The Human–Voyager 2 Collaboration

News & Comment

1179 The Missing Crystallography Data

1181 Help Wanted: Director, NIH

1182 High-Energy Management Stirs Up Energy Research

1184 Smithsonian, Indian Leaders Call a Truce — Old Bones Solve New Problems

1186 White House, Congress Push Computer Plan

Research News

1187 In Search of the Plastic Potato — Redesigning Nature's Plastics Factories

1190 Say It Again in Plain Algebra — Algebra: A Hoard of Radicalism

1191 Computer-Age Stargazing

1192 *Briefings:* Wistar Cleared by Argentina — Gupta's Defense — Saving Madagascar Wildlife — Amateur Hours on Hubble Telescope — The Selling of Cold Fusion — Cocaine Trends

Articles

1197 History of Meteorites from the Moon Collected in Antarctica: O. Eugster

1202 Experiments with High-Energy Neutrino Beams: J. Steinberger

1209 Visuomotor Coordination in Reaching and Locomotion: A. P. Georgopoulos and S. Grillner

Research Articles

Reports

1221 A Near-Optimum Parallel Planarization Algorithm: Y. Takefuji and K.-C. Lee
cover The hoatzin, *Opisthocomus hoazin*, a neotropical leaf-eating bird, is the only bird known to have ruminant-like foregut fermentation. This unexpected digestive system in a small flying endotherm provides new insights into theoretical size limitations in vertebrate herbivores and the evolution of foregut fermentation as a digestive strategy. See page 1236. [Photograph by Stuart D. Strahl, WCI–New York Zoological Society]

1223 Shear Forces in Molecularly Thin Films: M. SCHOEN, C. L. RHYKERD, JR., D. J. DIESTLER, J. H. CUSHMAN

1227 Aerosols, Cloud Microphysics, and Fractional Cloudiness: B. A. ALBRECHT

1231 Evidence for a Heterogeneous Upper Mantle in the Cabo Ortegal Complex, Spain: J. GIRARDEAU, J. I. G. IBARGUCHI, N. B. JAMAA

1234 Targeting of Nonexpressed Genes in Embryonic Stem Cells Via Homologous Recombination: R. S. JOHNSON, M. SHENG, M. E. GREENBERG, R. D. KOLODNER, V. E. PAPAIOANNOU, B. M. SPIEGELMAN

1236 Foregut Fermentation in the Hoatzin, a Neotropical Leaf-Eating Bird: A. GRAJAL, S. D. STRAHL, R. PARRA, M. G. DOMINGUEZ, A. NEHER

1242 T Cell Receptor Gene Trans-Rearrangements: Chimeric γ-δ Genes in Normal Lymphoid Tissues: B. TYCKO, J. D. PALMER, J. SKLAR

1246 Activation of Bacterial Porin Gene Expression by a Chimeric Signal Transducer in Response to Aspartate: R. UTSUMI, R. E. BRISSETTE, A. RAMPERSAUD, S. A. FORST, K. OOSAWA, M. INOUE

1249 Acetylcholine and GABA Mediate Opposing Actions on Neuronal Chloride Channels in Crayfish: C. PFEIFFER-LINN AND R. M. GLANTZ

Book Reviews

1259 The Politics of Earthquake Prediction, reviewed by D. SERWER ■ Memoirs of an Unregulated Economist, W. J. BAUMOL ■ Impact Cratering, K. A. HOLAPPLE ■ Seabirds and Other Marine Vertebrates, G. L. HUNT, JR. ■ Books Received

Products & Materials

1264 Hand-Held Voice Data Collection ■ Scanning Electron Microscope for Wet Tissue ■ Personal Bibliography Database ■ Kit for Sequencing Gel Preparation ■ Automatic Cell Separator ■ Microprocessor-Controlled Pipetting ■ Literature
The Human–Voyager 2 Collaboration

The successful Grand Tour of the outer planets by Voyager 2 represents one of humanity's great achievements. The splendid outcome of the mission carried out in forbidding and hostile environments was due to exemplary exercise of imagination, ingenuity, careful design, and a high level of human-machine interaction and coordination. An essential ingredient was excellent engineering capability at the Jet Propulsion Laboratory (JPL) that had been nurtured by earlier Mariner missions to the inner planets. Vidicon TV cameras developed for those flights had proved their utility and dependability. Instruments used in science experiments had also been successfully flown. Perhaps most important was the knowledge gained in long-distance human-computer interaction that permitted responses to commands that were often open in electronic equipment exposed to the rigors of space.

Voyager, though light in weight, had features that facilitated coping with many contingencies. In the 1800-pound spacecraft were six computers, eleven different science instrument packages, 238Pu thermoelctric power generators furnishing about 400 watts of power, attitude-controlling devices, propellant for mid-course maneuvers and attitude control, two radii for sending information, and two for receiving it. Redundancy in the computers and radio receivers was later to prove crucial.

Two of the six computers were devoted to attitude control in three dimensions. Two were devoted to the scientific instrumentation. The remaining two were the brains of the vehicles. They were reprogrammable from Earth and could control the various functions of the spacecraft.

Less than 8 months after blast-off, defects that could have ruined the mission developed in the two radio receivers. One went dead. The second was found to be “tone-deaf.” That is, it could not cope with the variations in frequency arising from a variable Doppler effect. In addition, the frequency that the receiver could recognize was influenced by temperature effects as small as 0.25°C. The JPL engineers diagnosed the problems and prepared computer tapes that slowly varied the sending frequency to compensate exactly for the disturbing effects. This restored good communication with Voyager. More than 11 years later, the receiver is still tone-deaf, but it can recognize the signals coming to it from Earth more than 4 light-hours away.

The Voyager 2 mission was one of the few times that a major space effort exceeded the promises made for it. JPL had only promised exploration of Jupiter and Saturn. But even before reaching Saturn the Voyager 2 team was making plans and developing capabilities for encounters with Uranus and Neptune. The images obtained from Jupiter and its satellites had been well received by the public. It was desirable to obtain good and many images of the two outer planets despite the low intensity of sunlight on them. At Neptune, light intensity is only 1/900 that at Earth. To obtain good pictures at the outer planets required a comparatively long exposure. But the attitude of the spacecraft tends to drift, leading to blurring of the image. The engineers devised and tested a way of minimizing this drift and radiated the necessary instructions to Voyager 2. Steps were taken to improve reception of image signals on Earth through expanding the array of radio dishes. A major improvement came from employing a redundant computer on the spacecraft. The memory and processor of the computer were used to compress the TV signals. A special computer code enabled Voyager 2 to send back the differences in light intensity from adjacent picture elements. This in effect enhanced the range of communication of images by a factor of 2.5. Another improvement applicable to small satellites being passed at more than 40,000 miles per hour was to pan the camera by rotating the spacecraft while passing by. Instructions for this were communicated to the spacecraft which later implemented them at the appropriate moment.

One is left with a deep admiration for the quality of teamwork between humans and the spacecraft though they are nearly 3 billion miles apart. The humans safe on Earth have been able to use facilities of equipment and consultation to devise programming techniques that have wrung from Voyager 2 performance that was not imagined at blast-off on 20 August 1977.—PHILIP H. ABELSON

*Results from Voyager's encounter with Neptune and Triton will be published in a future issue of Science.