Malaria Red Cell Cytoadherence

In their report on the identification of a malaria sequestration receptor, Ockenhouse et al. (1) allude to in vitro correlates used to study cytoadherence of *Plasmodium falciparum*-infected erythrocytes. They do not discuss the ex vivo perfusion of the rat mesentery microcirculation, the only method that detects adherence to venular endothelium and the only method with which investigators have studied the cytoadherence phenomenon under flow conditions and physiological wall shear stress (2). The venules are the site of true in vivo cytoadherence and microcirculatory occlusion. This approach deserves at least as much attention as cytoadherence to melanoma cells, which are actually not very relevant to in vivo conditions. With the use of the microcirculatory assay, we have found that both soluble thrombospondin (TSP) and antibodies to thrombospondin have a profound inhibitory effect on cytoadherence of *P. falciparum*-infected red cells to venular endothelium (3). However, reversibility with these agents has not been attempted, so it is misleading to say (as the authors do) that “neither TSP nor antibodies to TSP have been reported to reverse cytoadherence.” Nevertheless, the fact that cytoadherence is blocked with these agents is sufficient evidence that TSP is an important factor in the cytoadherence process. Moreover, Ockenhouse et al. compare activity of soluble glycoprotein IV (GP IV) to that of TSP in inhibition assays on a weight basis. This comparison is unwise when the molecular weights differ by a factor of 4 to 5 (TSP is a 450-kD protein, as compared with 88 kD for GP IV); what is really needed is an estimate of relative affinities. This can best be obtained by a comparison in the same system under the same conditions of ionic composition and strength and, of course, equimolar concentrations. Until this comparison is made, one should have an open mind about the relative affinities of GP IV and TSP. Finally, recent studies have shown that TSP and GP IV bind to each other (4), hence demonstrating that identifying a receptor does not exclude other proteins (such as TSP) from playing a “binding” role between endothelium receptors and the red cells. It is likely, therefore, that a final picture of malaria red cell cytoadherence will involve a scheme in which both proteins (and perhaps others) play an important role.

EUGENE ROTH, JR
DHANANJAYA K. KAUL
RONALD L. NAGEL
Division of Hematology,
Albert Einstein College of Medicine-
Montefiore Medical Center,
Bronx, NY 10467

REFERENCES
7 April 1989; accepted 19 September 1989

Response: Roth et al. object to the fact that we did not cite their work in our paper. We are unaware of any data that enable one to determine whether an ex vivo rat mesoappendix model more closely approximates in vivo sequestration of human parasitized erythrocytes than does the in vitro binding of parasitized erythrocytes to melanoma cells or cultured human endothelial cells. We described the results of in vitro assays because these are the assays used in our laboratory. We encourage investigators who use other assays to confirm, refute, or expand upon our findings using their models.

With specific reference to thrombospondin (TSP), the molecular basis of its interactions with bound infected erythrocytes (IRBC) and with the leukocyte differentiation antigen CD36 is unknown, and there is not an unambiguous single explanation for all of the available data. However, it is clear from previously published reports (1) that TSP alone is insufficient to support cytoadherence to cells in vitro. Preliminary data from our laboratory (2) suggest that CD36 and TSP bind to independent ligand(s) on IRBC. We have been unable to perform studies comparing the affinity of CD36 with that of TSP because, although we have confirmed that immobilized TSP will bind IRBC, we have been unable, using the methods described in our paper, to detect binding of iodinated TSP to IRBC.

We, like Roth et al., continue to have open minds regarding the relative importance of CD36, thrombospondin, intercellular adhesion molecule 1 (3), and other receptors in cytoadherence and sequestration.

CHRISTIAN F. OCKENHOUSE
NARENDRA N. TANDON
CATHELEEN MAGOWAN
G. A. JAMIESON
JEFFREY D. CHULAY
Department of Immunology,
Walter Reed Army Institute of Research,
Washington, DC 20307-5100

REFERENCES
8 May 1989; accepted 19 September 1989
Response: Malaria Red Cell Cytoadherence
CHRISTIAN F. OCKENHOUSE, NARENDRA N. TANDON, CATHLEEN MAGOWAN, G. A. JAMIESON and JEFFREY D. CHULAY

Science 246 (4933), 1051.
DOI: 10.1126/science.246.4933.1051-a

ARTICLE TOOLS http://science.sciencemag.org/content/246/4933/1051.2.citation

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service.

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.