This Week in Science

Editorial

Planetary Fluids

281

Perspective

Sodium-Calcium Exchange in Excitable Cells: Fuzzy Space: W. J. Lederer, E. Niggli, R. W. Hadley

283

Letters


288

News & Comment

Stanford Erupts Over Indirect Costs
East Germany Struggles to Clean Its Air and Water
NIH: The Endless Search
Scientific Misconduct Cases Revealed Bromley Promises Small Science Focus
Gordon & Breach Impanels a Journal Jury
How the United States Stacks Up in Key Technologies

292
295
296
297
298
299

Research News

A Generational Rift in Geophysics • Not So Irreconcilable Differences?
Is AIDS Dementia Due to Increases in Calcium?
Polymer Chemists Are Having a ROMP
“Hairy Enzymes” Stay in the Blood
Briefings: Update: RU 486 • Math Students Needed • Ordinary Is Beautiful • AIDS Meeting: Visas • The Dimmest “Star” • Social Science: NSF’s Poor Relation • Changing U.S. Demography • Truth in Labeling

300
303
304
305
306

Articles

Atmospheric Dynamics of the Outer Planets: A. P. Ingersoll
The Dynamics of the Oceanic Subtropical Gyres: J. Pedlosky
Scales and Effects of Fluid Flow in the Upper Crust: L. M. Cathles III
Fluid Processes in Subduction Zones: S. M. Peacock
Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation: B. J. Wood, L. T. Bryndzia, K. E. Johnson
Paleomagnetism and the Nature of the Geodynamo: R. T. Merrill and P. L. McFadden

308
316
323
329
337
345

SCIENCE is published weekly on Friday, except the last week in December, and with a supplement in March by the American Association for the Advancement of Science, 1333 H Street, NW, Washington, DC 20005. Second-class Non-profit postage (publication No. 484460) paid at Washington, DC and at an additional entry. Copyright © 1990 by the American Association for the Advancement of Science. The title SCIENCE is a registered trademark of the AAAS. Domestic individual membership and subscription ($5): $75. Domestic institutional subscription ($5): $125. Foreign postage extra: Canada $46, other (surface mail) $46, air mail via Amsterdam $85. First class, airmail, school-year, and student rates on request. Single copy sales: Current issue, $3.50; back issues, $5.00. Biotechnology issue, $6.00 (for postage and handling, add per copy $0.50 U.S., $1.00 all foreign); Guide to Biotechnology Products and Instruments, $20 ($0.10 per page), $0.10 plus $0.10 per page is paid directly to COC, 27 Congress Street, Salem, Massachusetts 01970. The identification code for Science is 0036-8075/83 $1 + .10. Change of address: allow 6 weeks, giving old and new addresses and 11-digit account number. Postmaster: Send Form 3579 to Science, P.O. Box 1723, Riverton, NJ 08077. Science is indexed in the Reader’s Guide to Periodical Literature and in several specialized indexes.

The American Association for the Advancement of Science was founded in 1848 and incorporated in 1874. Its objectives are to further the work of scientists, to facilitate cooperation among them, to foster scientific freedom and responsibility, to improve the effectiveness of science in the promotion of human welfare, to advance education in science, and to increase public understanding and appreciation of the importance and promise of the methods of science in human progress.
cover  The Champagne Pool, named for its CO₂ bubbles, provides an interesting window into fluid processes beneath Waiotapu, the largest area of surface thermal activity in New Zealand. The pool occupies a 900-year-old hydrothermal explosion crater. Evaporation cools the surface waters from 100°C to about 75°C, producing the steam. Amorphous silica, blown by the wind to the sides, settles as an orange coating that contains 80 parts per million of gold and 175 parts per million of silver. See page 323. [Photograph by L. M. Cathles]

Reports

351 Seismic-Wave Attenuation Associated with Crustal Faults in the New Madrid Seismic Zone: R. M. Hamilton and W. D. Mooney


356 Developmental Arrest During Larval Life and Life-Span Extension in a Marine Mollusc: S. E. Miller and M. G. Hadfield


364 HIV-1 Coat Protein Neurotoxicity Prevented by Calcium Channel Antagonists: E. B. Dreyer, P. K. Kaiser, J. T. Offermann, S. A. Lipton

367 Defective Presentation of Endogenous Antigen by a Cell Line Expressing Class I Molecules: N. A. Hosken and M. J. Bevan

370 Shared Actions of Endotoxin and Taxol on TNF Receptors and TNF Release: A. H. Ding, F. Porteu, E. Sanchez, C. F. Nathan

372 Sodium Current–Induced Release of Calcium from Cardiac Sarcoplasmic Reticulum: N. LeBlanc and J. R. Hume

376 The Relationship Between Charge Movements Associated with ICa and INa-Ca in Cardiac Myocytes: J. H. B. Bridge, J. R. Smolley, K. W. Spitzer

378 Erythropoietin Retards DNA Breakdown and Prevents Programmed Death in Erythroid Progenitor Cells: M. J. Koury and M. C. Bondurant

Book Reviews

388 American Teachers, reviewed by S. Schwager

390 Science Between the Superpowers and Techno-Diplomacy, reviewed by P. R. Josephson

392 Some Other Books of Interest

393 Books Received

Products & Materials

394 Database of 3-D Molecular Structures

395 Fluids Spectrometer

396 Monoclonal Antibodies

397 Image Analysis Workstation

398 Affinity Medium for Biomolecule Analysis

399 Oligonucleotide Labeling Kits

400 Hot Plate Magnetic Stirrer

401 Data Acquisition Program for Electrophysiology

402 Literature

Board of Directors

Mary Ellen Avery
Francisco J. Ayala
Eugene H. Kota-Robles
Robert A. Frosch
Joseph G. Gavin, Jr.
John H. Gibbons
Beatriz A. Hamburg
Florence P. Haseltine
William T. Golden
Treasurer
Richard S. Nicholson
Executive Officer

Editorial Board

Elizabeth E. Bailey
David Baltimore
William F. Brinkman
E. Margaret Burbidge
Pierre-Gilles de Gennes
Joseph L. Goldstein
Mary L. Good
F. Clark Howell
James D. Idol, Jr.
Leon Knopoff
Oliver E. Nelson
Yasuomi Nahisuka
Helen M. Ranney
David M. Haap
Howard A. Schneiderman
Larry L. Smarr
Robert M. Solow
James D. Watson

Board of Reviewing Editors

John Abeloson
Don L. Anderson
Stephen J. Benkovic
Gunter K. Blobel
Floyd E. Bloom
Henry R. Bourne
James J. Buft
Kathryn Calame
Charles R. Cantor
Ralph J. Ciarone
John M. Coffin
Robert Dorfman
Bruce F. Eldridge
Paul T. Englund
Fredric S. Fay
Harry A. Fozzard
Theodore H. Gabbai
Roger I. M. Glass
Stephen P. Golz
Corey S. Goodman
Stephen J. Gould
Eric F. Johnson
Stephen M. Kosslyn
Konrad B. Krauskopf
Charles S. Leavings III
Richard Losick
Joseph B. Martin
John C. McGriff
Anthony R. Means
Moritimer Mishkin
Roger A. Nicoll
Carl O. Pabo
Yoshitaka Pocker

Technology

Dennis A. Powers
Erkki Ruoslahti
Thomas W. Schoen
Ronald H. Schwartz
Terrence J. Seynowski
Robert T. N. Tjian
Virginia Trimble
Emil R. Unruhe
Geerat J. Vermeij
Bert Vogelstein
Harold Weintraub
Irving L. Weissman
Zena Werb
George M. Whitesides
Owen N. Witte
William B. Wood

20 APRIL 1990

TABLE OF CONTENTS
Planetary Fluids

The internal dynamics of planets, driven by various energy sources, are principally evident in the motions of fluids. The complex motions of the atmosphere and oceans are most familiar, but similar motions in Earth's outer core produce the magnetic field and convection of the mantle drives plate tectonics. Chemical interaction of fluids with the crust and mantle produces mineral deposits, petroleum resources, and volatilizes and provides nutrients for biological communities. Study of these fluids is thus central to our understanding of the workings and evolution of planets, as well as to our interaction with our own planet.

The articles in this issue of *Science* highlight recent progress in understanding the dynamics and effects of several important planetary fluids. The nature of the various research efforts and the underlying patterns observed are in many respects similar; studies differ in the ways the various fluids must be probed. Because evidence of the motions and effects of these fluids is often enigmatic or difficult to obtain, mathematical models and scaled experiments are also used to develop a more complete picture. Current research is aimed at obtaining new and better sources of data and at improving the models and experiments.

Most of the articles focus on Earth, but comparison with fluids on other planets, where conditions and energy inputs are different, is essential for a complete understanding. The planetary fluids we know best are the atmospheres, and the recent Voyager missions revealed many unusual features shared by the outer planets. Ingersoll relates these and earlier observations to the energy inputs and fluid dynamical models of atmospheric flow. The outer planets have higher wind speeds, smaller temperature differences between the equator and poles, and storms that last longer than those on Earth.

Energy ultimately derived from the sun also drives the circulation of the oceans; this motion in turn greatly affects global climate. Pedlosky shows how recent oceanographic observations and theoretical advances in treating the forcings of winds and Earth's rotation are helping to unravel the dynamics of the oceanic gyres—the large pools of swirling waters that extend to depths of up to 2 kilometers in the subtropics of each ocean.

Three articles discuss the movements and effects of aqueous and carbon- and hydrocarbon-rich fluids in Earth's crust and mantle. The interaction of crustal and mantle fluids in Earth may have caused its evolution to differ markedly from that of the other terrestrial planets, notably Venus.* Cathles describes recent evidence of voluminous and regionally extensive fluid flow in the oceanic and upper continental crust. Fluids trapped from this flow in altered oceanic crust and sediments are released to the mantle in subduction zones. Peacock estimates the amount of fluids involved and follows the evolution and fate of fluids as a function of the thermal structure of subduction zones. The oxidation state of samples of the mantle brought up by magmas or exposed in mountain belts provides a useful tracer of the interaction of such fluids with the mantle. Wood, Bryndzia, and Johnson examine the variation in oxidation state of different regions of the mantle; samples from near modern and ancient subduction zones are relatively oxidized compared with samples from mid-ocean ridges, where the formation of new oceanic crust releases mantle fluids to the oceans and atmosphere.

The tracer for the long-term fluid motions of the outer core is the record of past magnetic fields preserved in rocks; this magnetic record potentially can be extended back several billion years. Merrill and McFadden show that details of the reversals and other variations of the field are now becoming clear and are starting to provide essential data for mathematical models of the geodynamo.

On this 20th anniversary of Earth Day, there is a growing appreciation of our impact on our environment. Many of the immediate problems we confront from climate change to natural hazards are directly linked to Earth's dynamics, processes of change that have continued for more than 4 billion years; thus, progress in finding solutions may well reflect how well we understand how our planet works.—R. Brooks Hanson

---