explained by the fact that in the low-energy region the Auger angular distribution is a rapid function of kinetic energy. Thus the result they obtained was specific to a particular kinetic energy and has no general validity. The agreement they obtained with a model with "shadowing" was accidental and was directly opposite to the physical concept and trend at higher energies. Another possible explanation of the results of Frank et al. is that they made an error of 60° as they superimposed their data on the real-space crystallographic directions. The crystallographic directions indicated in our work have been independently determined by x-ray scattering and by analysis of low-energy electron diffraction intensity voltage curves.

Angular distributions for AES and XPS provide a map of intensity enhancements along high-density interatomic directions, provided that the kinetic energy of the emitted electrons is high enough (for example, above a few hundred electron volts). Enhanced forward scattering (or forward focusing) is the correct physical explanation for the general trend. Auger angular distributions at very low energies are energy-dependent and hence they do not have a single fixed relation to the surface structure. Explanation of the general trend in terms of shadowing is wrong and is not supported by data at high energies.

X. D. Wang
Z. L. Han
B. P. Tonner
Y. Chen
S. Y. Tong
Department of Physics and Laboratory for Surface Studies, University of Wisconsin–Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53201

REFERENCES
12 February 1990; accepted 11 April 1990

It is an important principle of scientific development that new theories should account for both new and old experimental data. It is therefore disturbing to see the recent article by Frank et al. (1) concerning the angular dependence of Auger electron emission from solids that claims to have developed a new theory while dismissing older theories as wrong and totally failing to consider a wealth of old experimental data that support the "old" theories. Frank et al. (1) discuss the influence of atoms surrounding an Auger electron emitter (at kinetic energies of 65 and 355 eV) purely in terms of local "shadowing." Such a treatment totally neglects the quantum mechanical wave nature of the electrons in this energy range; indeed, this is precisely the energy range in which Davisson and Germer (2) first demonstrated the wave nature of electrons through scattering by atoms in the surface of a solid (a closely related phenomenon) for which they received the Nobel Prize.

Despite this fundamental flaw in the starting point, it is striking that the "theory" of Frank et al. appears to fit the data rather well; this success, I believe, can be understood in terms of the proper quantum mechanical description, which is far more widely applicable. In particular, two features characterize electron scattering by atoms in this energy range. First, there is invariably a peak in the forward-scattering amplitude; but second, the scattering factor is complex, so there is a phase shift between the directly transmitted and forward-scattered component. If this phase shift is close to π, the interference between these two components is destructive and a reduced (shadowed) forward-scattering intensity is seen. This effect is most common at low energies and is probably the main qualitative effect in the data of Frank et al. (although the data can only be modeled reliably by adding in many scattering events). However, if the phase shift is small compared with π, the interference is constructive and enhanced forward scattering ("focused") intensity is seen. This effect is the usual state of affairs at high energies (above ~500 eV). Perhaps the nicest example of this effect (the opposite of that seen by Frank et al.) is in photoemission, rather than Auger electron emission, from a diatomic molecule such as CO (3). It is also seen in studies of epitaxial layer growth (4). For chains of atoms (as in the Pt case of Frank et al.), the situation is rather more complex because multiple forward scattering along the chain can lead to either enhanced or attenuated emission emerging from the chain.

Finally, I should remark that this phenomenon of coherent interference of elastically scattered electron wavefield components can also occur in backscattering. The effect is weak at high energies (for example, the 518-eV iodine Auger emission in the work of Frank et al.), so little angular dependence is seen. However, at low energies strong Auger (and photoemission) angular features are seen from this effect from atoms that lie above all of the scattering atoms (5) and are therefore totally inexplicable within the framework of the Frank et al. theory.

D. P. Woodruff
Physics Department
University of Warwick
Coventry CV4 7AL United Kingdom

REFERENCES

21 February 1990, accepted 11 April 1990

Response: In our recent article (1) we reported that angular distributions of Auger electrons emitted from single-crystal surfaces and monolayers contain the silhouettes of surface atoms backlit by emission from atoms deeper in the solid. Simulations based upon atomic point emitters and spherical atomic scatterers of Auger electrons were in close agreement with the experimental results. Angular distribution Auger microscopy (ADAM) is a useful technique for direct imaging of interfacial structure as well as for investigating the interaction of electrons with matter. Appropriability of ADAM was illustrated by images obtained for platinum [111] (Pt[111]) and for monoatomic layers of silver and iodine on Pt[111]; several other samples have also been imaged.

Briefly, our conclusions are that atoms behave as isotropic point emitters and spherical scatterers of Auger electrons and that inelastic scattering predominates over elastic scattering at low kinetic energies, leading to relatively simple, surface-sensitive images. However, certain experimental criteria must be met in order to obtain useful ADAM images, including (i) the direction of the incident beam in relation to the sample must be held constant to eliminate one of the two complicated geometric effects in the experiment; (ii) modulation of pass energy and synchronous detection in order to distinguish Auger electrons from the much more numerous background electrons; (iii) angular accuracy and precision better than ±1° to locate the many sharp features of typical
distributions; (iv) signal-to-noise ratios greater than 50:1 to preserve subtle features; (v) kinetic energy resolution sufficient to separate competing Auger lines of substrate and overlayer; and (vi) scanning the complete range of angles above the surface so as to define unambiguously the nature of the distribution.

The correspondents object to the ADAM images containing minima where they expected maxima based upon their “forward-focusing” hypothesis. To rationalize the failure of their “forward-focusing” model, they suggest that our Pt[111] sample was misaligned. However, as is standard practice in our laboratory, the Pt[111] single crystal was oriented and polished such that all six faces were crystallographically equivalent, [references 2 and 34 of (1)]. This extra care in preparation of the crystal, which includes Laue photography of each of the six crystal faces, permits its use as an immersed electrode and also makes its orientation unmistakable. A photograph of the crystal used in the experiments is shown in Fig. 1A, and a model having the same orientation as our sample is shown in Fig. 1B. Note that the left and top edges are visible in this orientation and that the silhouettes of atoms located in the top layer are present at the correct locations in the ADAM image [figure 5 of (1)]. “Forward focusing,” which predicts maxima where minima occur, is not observed.

Another reason that the correspondents are surprised by our data is that they incorrectly assume that inelastic scattering in a crystal is homogeneous. Indeed, it is a dubious assumption that a crystal, composed of a periodic array of atoms, would behave as “jellium” when inelastically scattering electrons. Also, it is a mistake to assume that elastic scattering processes would predominate, given the wealth of electron spectroscopic evidence to the contrary that clearly demonstrates the importance of energy-loss processes. As illustrated by the data in figure 1B of (1), elastic scattering typically amounts to a few percent of scattering events. Furthermore, the backscattering of the silhouettes seen in ADAM images. Substrate Auger signals are attenuated by about 30% due to the presence of a single monatomic layer. Thus it should not be surprising that Auger emission angular distributions would reveal crystalline inhomogeneity when measured with sufficient precision and angle range at constant incident beam direction for well-characterized samples at low kinetic energies.

The correspondents claim that emission of Auger electrons from atom atoms is strongly anisotropic and that the observed isotropic distribution from adsorbed iodine (507 and 518 eV) in figure 6B of (1) is an exception because of its high energy. However, we have measured the angular distributions of Auger electrons from monatomic layers of silver (355 eV), chlorine (181 eV), and sulfur (152 eV), all of which are isotropic to within the precision of our measurements (about ±2%). Likewise, the Pt[111] Auger distribution at 65 eV is accurately described by equations based upon isotropic emitters. Therefore, it is not obvious what caused the angular variations reported by the correspondents. A possible source of those variations is that the angle of the incident beam relative to the sample was varied in their experiments. Regarding this undesirable complication, it has been reported that “a minor variation of angle of incidence, θi, for instance of 1° around θi = 45° can lead to a dramatic change in the relative peak heights. Hence one is led to the conclusion that the information contained in a single spectrum or in a small number of spectra cannot possibly suffice for a consistent picture which correlates well defined losses with certain structures in those spectra.”

The correspondents express the viewpoint that our results, which contradict their interpretations, are “limited and unrepresentative” and that their explanation works better at higher kinetic energies, where they claim to have found “enhanced intensities along interatomic directions.” We presented ADAM images based on Pt Auger emission at 65 eV and silver at 355 eV. Thus the data presented are typical of the energy range used in Auger experiments. Also, as we explained, lower kinetic energies are preferable because they produce simpler, more surface-sensitive images. For example, the principal interatomic axes are located in the three largest atomic silhouettes at θ = 35.3° with θ = 30°, 150°, and 270° [see figure 5C in (1)]. Note that intensity maxima are not observed along those directions. There is, however, a faint rhombic formation of higher intensities surrounding that region, the [110] normal. This feature predominates at higher kinetic energies (3) and is not precisely along, but near, the internuclear direction normal to [110]. Thus, if angular resolution, angular accuracy, or data density are insufficient, such features can be mistakenly assigned, leading to incorrect interpretations.

The correspondents suggest that we are “totally failing to consider” or are “unaware” of their data and interpretations. Not only are we aware of their work, but we cited a generous sampling in (1) (references 1 through 20); and although we agree with the conclusions of references 1 through 4, we pointed out basic experimental and interpretational shortcomings of references 5 through 20:

1) complete angular distributions spanning the full hemisphere were not measured, simulated, or displayed; analyzer angular resolution and data density with respect to angle were insufficient;
2) the direction of the incident beam with respect to the sample surface was not held constant;
3) distributions were measured at higher than optimal kinetic energies, which complicated interpretation;
4) signals were often not differentiated with respect to energy (dN/dE) in order to distinguish Auger electrons from background;
5) data were interpreted in terms of anisotropic Auger electron emission from individual atoms;
6) inelastic scattering of Auger electrons by crystals was assumed to be homogeneous; and
7) elastic scattering and multiple elastic scattering were overemphasized.

It seems that the correspondents’ primary objection is that we have not used their
"forward-focusing" model to explain our results. As noted in (1), the forward-focusing model does not adequately describe our angular distributions of Auger electron emission: (i) intensity maxima are not observed where "forward-focusing" models would predict them to be; (ii) observed maxima correspond instead to gaps or channels between atoms, sometimes located near but seldom directly along the interatomic axes; and (iii) atomic scatterers become smaller and more transparent at higher kinetic energy; our model continues to account for these results. Obviously, electrons exhibit a duality of wave and particle properties, and evidently, the ADAM experiment emphasizes the particle properties. One of the correspondents suggests that perhaps the observed silhouettes are due to an interference effect resulting in multiple scattering such that atomic scatterers produce minima for kinetic energies below about 500 eV but maxima otherwise. However, our experimental results do not support this idea; a monoatomic layer of scatterers (for which multiple scattering is especially improbable) produces distinct silhouettes even at energies near 500 eV.

The correspondents assert that Auger and photoelectron events are uncorrelated. As stated in (1), we agree that Auger events are uncorrelated but we leave open the possibility that coherent photoemission might be observable under some circumstances. That is, although the rates of Auger and photoelectron processes "have not been measured in the laboratory" (4), estimates place Auger processes "in the 10^{-16} to 10^{-15} s range," whereas the photoelectron process is generally considered to be "faster than 10^{-16} s" (5).

We believe that the correspondents' objections are based on faulty assumptions and are contradicted by the experimental evidence. We hope that recent developments will rekindle interest in the interaction of electrons with matter, an important area that is not at all "well understood." Prospects for future discoveries and practical applications in the area are excellent, provided that the appropriate experimental criteria are met in future work. Applications to epitaxial deposition, crystallography, alloys and materials, superconductivity, surface characterization, electrochemistry, and a wide variety of other areas are likely.

DOUGLAS G. FRANK
TERESA GOLDEN
ARTHUR T. HUBBARD
Surface Center and Department of Chemistry,
University of Cincinnati,
Cincinnati, OH 45221

REFERENCES AND NOTES
6 April 1990; accepted 11 April 1990
In Reply: Auger Electron Angular Distributions from Surfaces: Forward Focusing or Silhouettes?
Douglas G. Frank, Teresa Golden and Arthur T. Hubbard

Science 248 (4959), 1131-1133.
DOI: 10.1126/science.248.4959.1131-a

ARTICLE TOOLS
http://science.sciencemag.org/content/248/4959/1131.2.citation

PERMISSIONS
http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.