1355 This Week in Science

Editorial
1357 Testing for Carcinogens with Rodents

Letters

News & Comment
1367 Magnet Lab Decision Repels MIT
1368 Genetic Privacy Makes Strange Bedfellows
1369 OTA Peers into Cancer Therapy Fog
1370 Zebra Mussel Invasion Threatens U.S. Waters • Why Do Some Invasions Succeed?
1372 Massey Named to Head NSF Gene Therapy Begins
1373 Stanford Under Investigation Anthropology Goes Back to Ethiopia
1374 Briefings: NIH Adjusts Attitudes Toward Women • Hubble Sees a Supernova • Hyping Laser Angioplasty • Salahuddin Pleads Guilty • Social and Anti-Social Science • Richest U.S. Science Prize • Academy Tries No-Fault Defense

Research News
1376 Oncogenes Evoke New Cancer Therapies
1377 Bombesin Receptor Gene Cloned
1378 Electromagnetic Fields: The Biological Evidence
1379 Face to Face with EMFs
1381 Computer Viruses—Eternal Plague

Articles
1382 Atmospheric Carbon Dioxide Levels Over Phanerozoic Time: R. A. Berner
1387 State- and Bond-Selected Unimolecular Reactions: F. Crim

Research Articles
1393 Simple Dynamical Models of Neptune's Great Dark Spot: L. M. Polvani, J. Wisdom, E. De Jonge, A. P. Ingersoll
1398 Structure of Ribonuclease H Phased at 2 Å Resolution by MAD Analysis of the Selenomethionyl Protein: W. Yang, W. A. Hendrickson, R. J. Crouch, Y. Satow

Reports
In adult zebra finches (a male is shown here) and canaries, new projection neurons are formed in the high vocal center, a region of the brain. Species differences in the number of projection neurons added and the time when these additions occur suggest that these new neurons are involved in perceptual and motor song learning. See page 1444. [Photograph by A. Alvarez-Buylla]
Testing for Carcinogens with Rodents

The principal method of determining potential carcinogenicity of substances is based on studies of daily administration of huge doses of chemicals to inbred rodents for a lifetime. Then by questionable models, which include large safety factors, the results are extrapolated to effects of miniscule doses in humans. Resultant stringent regulations and attendant frightening publicity have led to public anxiety and chemo-phobia. If current ill-based regulatory levels continue to be imposed, the cost of cleaning up phantom hazards will be in the hundreds of billions of dollars with minimal benefit to human health. In the meantime, real hazards are not receiving adequate attention.

The current procedures for gauging carcinogenicity are coming under increasing scrutiny and criticism. A leader in the examination is Bruce Ames, who with others has amassed an impressive body of evidence and arguments. Ames and Gold summarized some of their recent data and conclusions in Science (31 August, p. 970). Three articles in press in the Proceedings of the National Academy of Sciences provide an elaboration of the information with extensive bibliographies. The articles also provide data about other pathologic effects of natural chemicals.

A limited number of chemicals tested, both natural and synthetic, react with DNA to cause mutations. Most chemicals are not mutagens, but when the maximum tolerated dose (MTD) is administered daily to rodents over a lifetime, about half of the chemicals give rise to excess cancer, usually late in the normal life span of the animals. Experiments in which synthetic industrial chemicals were administered in the MTD to both rats and mice resulted in 212 of 350 chemicals being labeled as carcinogens. Similar experiments with chemicals naturally present in food resulted in 27 of 52 tested being designated as carcinogens. These 27 rodent carcinogens have been found in 57 different foods including apples, bananas, carrots, celery, coffee, lettuce, orange juice, peas, potatoes, and tomatoes. They are commonly present in quantities thousands of times as great as are the synthetic pesticides.

The plant chemicals that have been tested represent only a tiny fraction of the natural pesticides. As a defense against predators and parasites, plants have evolved a large number of chemicals that have pathologic effects on their attackers and consumers. Ames and Gold estimate that plant foods contain 5,000 to 10,000 natural pesticides and break-down products. In cabbage alone some 49 natural pesticides have been found. The typical plant contains a total of a percent or more of such substances. Compared to the amount of synthetic pesticides we consume, we eat about 10,000 times more of the plant pesticides.

It has long been known that virtually all chemicals are toxic if ingested in sufficiently high doses. Common table salt can cause stomach cancer. Ames and others have pointed out that high levels of chemicals cause large-scale cell death and replacement by division. Dividing cells are much more subject to mutations than quiescent cells. Much of the activity of cells involves oxidation, including formation of highly reactive free radicals that can react with and damage DNA. Repair mechanisms exist, but they are not perfect. Ames has stated that oxidative DNA damage is a major contributor to aging and to cancer. He points out that any agent causing chronic cell division can be indirectly mutagenic because it increases the probability of endogenous DNA damage being converted to mutations. If chemicals are administered at doses substantially lower than MTD they are not likely to cause elevated rates of cell death and cell division and hence would not increase mutations. Thus a chemical that produces cell death and cancer at the MTD could be harmless at lower dose levels.

Diet rich in fruits and vegetables tend to reduce cancer in human subjects. The rodent MTD test that labels plant chemicals as cancer-causing in humans is misleading. The test is likewise of limited value for synthetic chemicals. The standard carcinogen tests that use rodents are an obsolescent relic of the ignorance of past decades. At that time, extreme caution made sense. But now tremendous improvements of analytical and other procedures make possible a new toxicology and far more realistic evaluation of the dose levels at which pathological effects occur.—PHILIP H. ABELOSON