351 This Week in Science

Editorial

353 Uncertainties About Health Effects of Radon

Letters

News & Comment

364 The Space Station Is Losing Friends ■ Engineers Symied By Management Chaos
367 Peer Review: Software for Hard Choices ■ Which Patient Did Gallo’s Virus Come From?
369 AIDS Vaccine Conference: Is “More” Better?
370 Another Deep Antarctic Ozone Hole
371 Briefings: Judd Leaves NIMH ■ Spilled Oil Looks Worse on TV ■ Asian Admissions (Cont.) ■ A Shakeout in R&D?

Research News

372 The Embryo Takes Its Vitamins
374 Superconductor Race Shifts to a New Arena ■ HTS Theory: Where’s the Beef?
376 Our Chimp Cousins Get That Much Closer
377 Geysera or Dust Devils on Triton?
378 Overcoming Rejection to Win a Nobel Prize

Perspective

386 Voyager at Triton: J. I. LUNINE

Articles

387 The Drug Dilemma: Manipulating the Demand: M. E. JARVIK
392 Nuclear Decay Techniques in Ion Chemistry: F. CACACE
399 Transport and Storage of Vitamin A: R. BLOMHOFF, M. H. GREEN, T. BERG, K. R. NORUM

Research Article

404 Two Domains of Yeast U6 Small Nuclear RNA Required for Both Steps of Nuclear Precursor Messenger RNA Splicing: P. FABRIZIO AND J. ABELSON
Reports

415 Color and Chemistry on Triton: W. R. Thompson and C. Sagan

419 Voyager Disk-Integrated Photometry of Triton: J. Hillier, P. Helfenstein, A. Verbrugge, J. Veverka, R. H. Brown, J. Goguen, T. V. Johnson

421 Surface and Airborne Evidence for Plumes and Winds on Triton: C. J. Hansen, A. S. McEwen, A. P. Ingersoll, R. J. Terrille

435 Triton's Plumes: The Dust Devil Hypothesis: A. P. Ingersoll and K. A. Tryka

437 The Impact Cratering Record on Triton: R. G. Strom, S. K. Croft, J. M. Boyce

AAAS Meetings

444 Advance Registration Form ■ Hotel Reservation Instructions ■ The Neurosciences: Challenges for the '90s ■ Discount Airfares ■ Call for Neuroscience Poster Papers

Book Reviews

450 Time Reversal, reviewed by A. Redfield and S. Schweber ■ Climate Change and U.S. Water Resources, D. F. Luecke

Products & Materials

TABLE OF CONTENTS 349

19 OCTOBER 1990

Mary Ellen Avery
Francisco J. Ayala
Eugene H. Cola-Robles
Robert A. Frolich
Joseph G. Gavin, Jr.
John H. Gibbons
Beatriz A. Hamburg
Florence P. Haseltine
William T. Golden
Treasurer
Richard S. Nicholson
Executive Officer

Editorial Board

Elizabeth E. Bailey
David Baltimore
William F. Brinkman
E. Margaret Burbidge
Pierre-Gilles de Gennes
Joseph L. Goldstein
Mary L. Good
F. Clark Howell
James D. Idol, Jr.
Leon Knopoff
Oliver E. Nelson
Yasutomi Nishizuka
Helena M. Ranney
David M. Raup
Howard A. Schneiderman
Larry L. Smarr
Robert M. Solow
James D. Watson

Board of Reviewing Editors

John Abelson
Don L. Anderson
Stephen J. Benkovic
Gunter W. Blobel
Floyd E. Bloom
Henry R. Bumey
James J. Bull
Kathryn Calame
Charles R. Cantor
Ralph J. Cicerone
John M. Coffin
Robert Dorfman
Bruce F. Eldridge
Paul T. Englund
Fredric S. Fay
Harry A. Fozzard

Theodore H. Geballe
Roger L. Glass
Stephen P. Gold
Corey S. Goodman
Stephen J. Gould
Eric F. Johnson
Stephen M. Kosslyn
Konrad B. Krauskopf
Charles S. Levinas III
Richard Losick
Joseph B. Martin
John C. McElroy
Anthony R. Means
Miriam Mathiowetz
Roger A. Nicoll
William H. Orme-Johnson III
Carl O. Pabo
Yeshayahu Pocker
Dennis A. Powers
Erick Peralta
Thomas W. Schoener
Ronald H. Schwartz
Terrence J. Sejnowski
Robert T. N. Tjian
Virginia Trimble
Emil R. Unanue
Geerat J. Vermeij
Bert Vogelstein
Harold Weintraub
Irving L. Weissman
Zena Werb
George M. Whitesides
Owen N. Witte
William B. Wood
Keith Yamamoto
Uncertainties About Health Effects of Radon

The Environmental Protection Agency is preparing to launch a nationwide campaign to increase public concern about dangers arising from exposure to indoor radon. This will represent an intensification of an ongoing program. Homeowners are discovering that potential buyers are insisting on radon inspections before agreeing to purchase a home. Some owners have already incurred costs of $1000 to $2000 to decrease radon levels to current EPA recommended action levels (4 pCi/liter). But EPA may promulgate more demanding standards. In late 1988, Congress passed the Indoor Radon Abatement Act setting for EPA the goal of reducing indoor levels to those of outdoor air. On average the cost to homeowners would be on the order of $10,000 each.

Health physicists have become increasingly critical of what they deem to be EPA overestimates of indoor radon concentrations and of their effects on producing lung cancer. For screening measurements, EPA has recommended locating monitoring devices in basements and making measurements during the winter. In homes, a principal source of radon is from beneath the basement floor. During the winter householders tend to ventilate the home less than in other seasons. The recommended screening procedure yields results as much as four times those obtained in yearlong observation of areas in which residents actually dwell. The screening data have been used by EPA to estimate the number of homes needing remediation and the risk of incurring lung cancer from exposure to indoor radon.

The EPA has indicated that annually as many as 20,000 lung cancers would be due to exposure to radon. EPA Administrator William K. Reilly stated at a press conference that people living in a house with an indoor air level of 4 pCi/liter of radon would incur a risk of lung cancer greater than that created by smoking half a pack of cigarettes a day.

To justify its statements about radon, EPA leans heavily on studies of the incidence of lung cancer in miners. The most recent is a 1988 report issued by the National Research Council (1). The relevant committee made an analysis of data available from four different cohorts of miners. The majority of excess lung cancer deaths of the total occurred among uranium miners of the Colorado Plateau. There, smoking habits were known, and it was possible to show that the risks of lung cancer for smokers were substantially increased by large exposures to radon. Hard data concerning large exposures to miners during the late 1940s and early 1950s are sparse, and the committee had to rely on estimates. Conditions in many mines at that time were cramped and primitive, and there was often no ventilation.

The NRC report included the following statement: “In summary, a number of sources of uncertainty may substantially affect the committee’s risk projections; the magnitude of uncertainty associated with each of these sources cannot readily be quantified. Accordingly, the committee acknowledges that the total uncertainty in its risk projections is large” (1, p. 47). In its projections to low exposures the committee made the conventional assumption that risk is a linear function of dose. That is, one can extrapolate from high-dose effects to predict those at low doses. This is an assumption that has never been proved.

Uncertainties in a foundation document (1) on which EPA bases its policies create a great need for an epidemiological approach. Such an effort is fraught with the difficulties of trying to measure a small effect due to radon in the presence of a large effect due to smoking. In addition confounding variables are possible. Information is available concerning possible confounders. The electronic computer makes it feasible to store the relevant data and to subject it to multivariate analysis. Bernard L. Cohen at the University of Pittsburgh has accumulated a data set that provides substantial coverage of about a third of the counties of the United States. He has performed a large-scale analysis of the data and concludes that at low doses found in the average home, radon does not have an adverse effect (2). Were his findings to be confirmed by further studies costing some millions of dollars, the public might be saved not only needless anxiety but many billions of dollars as well.

Instead of efforts directed at all homeowners, EPA should give priority to identifying rare circumstances (including high soil permeability and radium content) where elevated levels of radon prevail and encourage remediation there.—PHILIP H. ABEelson