879 This Week in Science

Editorial

881 Frontiers in Plant Biology

Letters

887 Sexism and Hypocrisy: J. N. Shurkin; J. Moore ■ The Future of Universities: S. Mac Lane ■ Transmutation of High-Level Nuclear Waste: M. Steinberg ■ Proton Microprobe Development: G. Legge; Editors' Response ■ Indirect Costs and Merit Review: C. R. Scheman

News & Comment

900 Experts Clash Over Cancer Data
903 Soviet Nuclear Testing: The Republics Say No
904 National Science, Technology Medalists Named
905 Orphan Drug Compromise Bush-Whacked
906 Briefings: Playing Chicken with Mount St. Helens ■ Hubble Sees Birth of a Star ■ German Court Rules on Physics Surveys ■ Who Takes Science? ■ New Life for German Egyptology ■ Dreary Days for British Brains ■ Umbilical Blood as Marrow Substitute

Research News

908 Technical Advances Power Neuroscience
910 Nitrogen-Fixing Bacteria Find New Partners ■ The Name of the Rose, or Hunting for Plant Database
912 Venus Is Looking Too Pristine
913 DOE to Map Expressed Genes A Stirring Tale of Crystal Growth

Articles

923 Phase Change and the Regulation of Shoot Morphogenesis in Plants: R. S. Poethig
931 Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus: Z. Schwarz-Sommer, P. Huijser, W. Nacken, H. Saedler, H. Sommer
942 The Texas Cytoplasm of Maize: Cytoplasmic Male Sterility and Disease Susceptibility: C. S. Levings III
948 Developmental Biology of a Plant-Prokaryote Symbiosis: The Legume Root Nodule: J.-P. Nap and T. Bisseling
954 Molecular Chaperones: The Plant Connection: R. J. Ellis
959 The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants: P. N. Benfey and N.-H. Chua

Reports

970 Ridge Spreading, Subduction, and Sea Level Fluctuations: M. Gurnis
973 Ice Nucleation by Alcohols Arranged in Monolayers at the Surface of Water Drops: M. Gavish, R. Popovitz-Biro, M. Lahav, L. Leiserowitz
975 Chiral Symmetry Breaking in Sodium Chlorate Crystallization: D. K. Kondepudi, R. J. Kaufman, N. Singh
977 Localized All-or-None Calcium Liberation by Inositol Trisphosphate: I. Parker and J. Iovra
982 A Cytoplasmic Protein Inhibits the GTPase Activity of H-Ras in a Phospholipid-Dependent Manner: M.-H. Tsai, C.-L. Yu, D. W. Stacey
985 Mesodermal Control of Neural Cell Identity: Floor Plate Induction by the Notochord: M. Placzek, M. Tessier-Lavigne, T. Yamada, T. Jessell, J. Dodd
997 Regulation of Gene Expression with Double-Stranded Phosphorothioate Oligonucleotides: A. Bielinska, R. A. Shviddasani, L. Zhang, G. J. Nabel

Book Reviews

1020 The Impossible Science, reviewed by: B. M. Berger • Particle Physics and Inflationary Cosmology, D. N. Schramm • Packrat Middens, C. Whitlock • Molecular Systematics, W. S. Moore • Books Received

Products & Materials

1029 DNA Purification Kit • Custom Peptide Synthesis • Software for Factorial Experimental Designs • Figure-8 Animal Maze • Numerical Analyst Program • Agarose for Fine PCR Separation • Ion Chromatograph • Literature
Frontiers in Plant Biology

The estimated 260,000 species of plants that exist on the earth today, together with algae and photosynthetic bacteria in the ocean, convert carbon dioxide to the foodstuffs used by the 5 billion humans and other creatures currently living on the planet. Moreover, plants reduce carbon dioxide concentrations and generate the oxygen needed to preserve our ecology. Plants also offer us an opportunity to understand basic principles in biology because of their difference from, and similarity to, animals and bacteria. This special issue of Science, edited under the expert guidance of Pamela Hines, contains articles that address both practical questions and basic plant research.

One feature that distinguishes plants from animals is the phenomenon called totipotency, which refers to the ability of a highly differentiated vegetative plant cell to be the source for an entire new plant. In animals, a liver cell cannot be converted into a new animal, nor even into a nerve cell. Differentiation and organ formation, however, occurs throughout the lifetime of a plant and can sometimes extend many, many years. Thus, while the process of differentiation is common to both kingdoms, plants offer a different tool to study it. Homeotic mutants that perturb the differentiation process can produce the wrong organ or plant in places as well as animals. Schwarz-Sommer and co-workers used such mutants in flower development in order to understand the molecular basis of morphogenesis. The shoot system of higher plants is used as a model by Poethig to study the process of differentiation and its changes over time and space. The shoot apex passes through what might be called juvenile, adult, and reproductive phases, and these may be related to fundamental molecular properties such as DNA methylation and epigenetic cell status.

Rubisco (ribulose bisphosphate carboxylase-oxygenase), which plays a vital role in fixing the carbon dioxide from the atmosphere, is quite an inefficient enzyme and is therefore made in enormous quantities. It may be the single most abundant protein in the biosphere. Improving the properties of rubisco is of great practical value, and is the goal of much plant research. It has also been a source of theoretical understanding in regard to the assembling of protein complexes, because the role of chaperones has been uncovered and enhanced by plant studies, as described by Ellis. Transcription in plants, described by Benfey and Chua, is extraordinarily complex, and involves cis factors, transactors, protein-protein interactions, and protein-DNA interactions suggesting that there is a combinatorial code of cis-regulating elements. These complexities suggest domain units may be similar to those in other species of plants and animals. Differences and similarities can be seen again in the articles on nitrogen fixation, male sterility, and self-incompatibility. Nap and Bisseling discuss the way in which nitrogen-fixing nodules operate in symbiosis with their host to provide nitrogen to the plant. It is a case of infection in which the infective agent, the prokaryote Rhizobium, generates a response in specific activation of genes in both plant and bacteria to produce nitrogen fixation and plant growth.

A not-so-beneficial genetic trait is described by Levings, who explains the cases of male sterility and disease susceptibility, which are linked inseparably in corn genes. These diseases are traced to a single 13-kilodalton polypeptide in the mitochondria, which provides a rational basis for the linkage. A system that prevents inbreeding in plants has elements of the self-nonself recognition of the immune system, as described by Haring and co-workers. In the plant system, a different individual of the same species is necessary for fertilization. The plant also uses glycoproteins for nonself recognition to improve hybrid vigor.

Lest those who are struggling with the difficult problems of mammalian species, life and death, or benign growth versus cancer, jump to the conclusion that plants are the preferred species, two interesting reports by Malamy et al. and Métraux et al. describe the importance of saliclyic acid as an endogenous signal involved in turning on various pathogenesis-related genes upon infection. The fascinating relation between plants and animals is therefore carried one step further, and philosophical questions arise as to whether plants get headaches in sympathy with their mammalian counterparts.

Our continuing pollution of the atmosphere and the problem of feeding the world's growing population will make plant biology ever more important. The articles in this issue illustrate some of the fascinating biological properties of plants purely as intellectual puzzles. Plant researchers can rejoice in knowing that the intellectual pleasure of working on these systems is matched by the relevance of such systems to other species and the enormous practical consequences for the ecosystem.—Daniel E. Koshland, Jr.