Primer Specificity Breakthrough.

Perfect Match™ Polymerase Enhancer

Dramatically Reduces False Priming • Enhances Specificity of PCR Amplification

Perfect Match™ polymerase enhancer* is an additive formulated to greatly increase the specificity of primer extension reactions (1,2). Primer-template complexes that contain mismatched nucleotides near the 3’ terminus of the primer are destabilized by Perfect Match polymerase enhancer (3). However, perfect and near perfect template-primer matches or primers with regions of non-homology at the 5’ end are not affected. Thus, the frequency of false priming events is dramatically decreased. Perfect Match polymerase enhancer may be used to minimize false priming events in such applications as cDNA synthesis and primer extension reactions including those involving PCR amplification (4).

Figure 1 shows two examples of *in vitro* amplification reactions that are significantly enhanced by the addition of Perfect Match polymerase enhancer to the polymerase preparation. Note that in lanes 1 and 2, the desired PCR product cannot be detected unless Perfect Match polymerase enhancer is added to the amplification reaction. In lanes 3 and 4, Perfect Match polymerase enhancer not only increases the intensity of the desired amplification products, but dramatically reduces the background artifacts generated by non-specific priming events.

Figure Legend: A photograph of a 1% agarose gel stained with ethidium bromide representing reaction products from PCR amplifications using the GeneAmp™ Kit† from Perkin-Elmer Cetus according to manufacturer’s instructions. The reactions were conducted with (lanes 1 and 3) and without (lanes 2 and 4) the inclusion of 1 unit Perfect Match polymerase enhancer. Lanes 1 and 2 represent 100 ng of human genomic DNA amplified with two 26-mer primers separated by 1400 nucleotides. Lanes 3 and 4 represent 100 ng of mouse genomic DNA amplified with two 23-mer primers separated by 550 nucleotides.

* Patents Pending
†GeneAmp is a trademark of Perkin-Elmer Cetus
Now Process Scale Chromatographers Have a Choice

Introducing Macro-Prep™ 50 Ion Exchange Supports

Macro-Prep 50 ion exchangers: hydrophilic, macroporous, and chemically stable—an exciting, high quality alternative to expensive agarose gels.

New Macro-Prep 50 supports provide:
- High throughput
- High binding capacity
- Reproducible performance
- Cost savings and efficiency

New Macro-Prep 50 supports can be:
- Cleaned in place with 1 N NaOH
- Autoclaved

Call us for information on these or other process scale chromatography products.
This Week in Science

Editorial

9 New Year's Resolutions and Future Shock

Letters

News & Comment

19 NSF Centers Rise Above the Storm ◆ A QUEST for Novel Electronics ◆ New Alliances, New Technology ◆ In Search of "Dark Matter"

23 Fight Over Data Disrupts Michigan State Project

24 SSC Detectors: Yes, No, Maybe

26 Will Canada Build on Earlier TRIUMF?

27 Briefings: Rehabilitation for Burt? ◆ NASA's Wish List ◆ Science Money Woes in the U.S.S.R.

Research News

28 Making 3-D Movies of the Heart

30 Cosmologists Begin to Fill in the Blanks

31 On the Road to Mandelate . . . Racemase

Perspective

33 Mechanisms of Alternative Pre-mRNA Splicing: T. Maniatis

Articles

46 The Dynamics of the Stratospheric Polar Vortex and Its Relation to Springtime Ozone Depletions: M. R. Schoebel and D. L. Hartmann

53 Spot-Scan Imaging in Transmission Electron Microscopy: K. H. Downing

Research Articles

60 Atomic Structure of Ferredoxin-NADP⁺ Reductase: Prototype for a Structurally Novel Flavoenzyme Family: P. A. Karplus, M. J. Daniels, J. R. Herriott

The American Association for the Advancement of Science was founded in 1848 and incorporated in 1874. Its objectives are to further the work of scientists, to facilitate cooperation among them, to foster scientific freedom and responsibility, to improve the effectiveness of science in the promotion of human welfare, to advance education in science, and to increase public understanding and appreciation of the importance and promise of the methods of science in human progress.
Cover Containment of elevated concentrations of the ClO free radical (shown in green) in the stratosphere above the Antarctic continent occurs within the wind jet generated by cooling during the austral winter night. Isolation of the vortex, that region poleward of the wind field maximum, is an important element in the case linking chlorofluorocarbon release to ozone destruction over Antarctica. See page 39. [Artwork by Joseph Spatola]

Reports

67 Observational Evidence for a Possible New Diffusion Path: B. R. HACKER AND J. M. CHRISTIE
70 Long-Term Human B Cell Lines Dependent on Interleukin-4 and Antibody to CD40: J. BANCHEREAU, P. DE PAOLI, A. VALLÉ, É. GARCIA, F. ROUSSET
72 Expression cDNA Cloning of the KGF Receptor by Creation of a Transforming Autocrine Loop: T. MIKI, T. P. FLEMING, D. P. BOTTARO, J. S. RUBIN, D. RON, S. A. AARONSON
75 Generation of Calcium Oscillations in Fibroblasts by Positive Feedback Between Calcium and IP3; A. T. HAROOTUNIAN, J. P. Y. KAO, S. PARANJPE, R. Y. TSIEN
78 Glycosylphosphatidylinositol: A Candidate System for Interleukin-2 Signal Transduction: D. D. EARDLEY AND M. E. KOSHLAND
85 Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801: K. A. TRUJILLO AND H. AKIL
87 Critical Structural Elements of the VP16 Transcriptional Activation Domain: W. D. CRESS AND S. J. TRIESENBERG
90 Three-Dimensional Structures of Acidic and Basic Fibroblast Growth Factors: X. ZHU, H. KOMIYA, A. CHIRINO, S. FAHAM, G. M. FOX, T. ARAKAWA, B. T. HSU, D. C. REES

Technical Comments

94 Model Simulation of Mid-Cretaceous Ocean Circulation: K. B. FÖLLM AND M. DELAMETTE; E. J. BARON AND W. H. PETERSON

Inside AAAS

96 Making Connections, reviewed by N. GERSTEL ■ The Superfluid Phases of Helium 3, J. W. SERENE ■ Squid as Experimental Animals, W. F. GILLY ■ Books Received

Products & Materials

99 Pyrogen Removal and Detection Products ■ Software for Amino Acid Analysis ■ Illumination System ■ Graphics Software ■ Ductless Fume Hood ■ In-Vivo Electrochemistry System ■ HPLC Column Oven ■ Literature

Information to Contributors is found on pages 35-37.
We started by eliminating the computer

Our new programmable 307 Pump is at the heart of the system. It controls other system components: an auto-injector, detector and integrator or data analysis system. This system is less expensive than most computer-based QC/QA systems and much easier to operate, too. All the information you need to start a run flashes on the front panel display.

Another key feature of the 307 is that it provides extremely smooth flow rates for repetitive retention times. And flow accuracy is unaffected by pressure changes or by the nature of the liquid.

Then we added an auto-injector that ensures accurate, reproducible results

The Gilson 231/401 Auto-Sampling Injector is another key component in the system. It automates the preparation and injection of up to 120 samples. (A larger capacity unit is available that can handle up to 540 samples.) A built-in rinsing function virtually eliminates cross-contamination due to carry-over. And because the 231/401 loads the sample directly into the injection valve, sample consumption is reduced.

Plus, all these benefits for QC/QA applications

- System requires less than 2 sq. ft. of bench space. Ideal for labs with multiple systems and minimal space.
- Quick system set-up. You can assemble the QC/QA system in 30 minutes or less. All connections are easily accessible.
- Simplifies compliance with GLP guidelines. 307 Pumps have built-in functions for tracking pump head usage.

To learn more about these and other advantages of the Gilson HPLC system for QC/QA analysis, contact your local Gilson representative. Or call us toll-free.

Call 800-445-7661
Quantitation has never been easier. The AMBIS Radioanalytic Imaging System combines direct quantitation with image acquisition, saving the investigator time and resources by eliminating the need for a number of analytical procedures. Virtually any flat radio-labeled sample — including ^{14}C, ^{32}P, ^{35}S, ^{59}Fe, ^{67}Ga, ^{90}Y, ^{99m}Tc, ^{111}In, ^{125}I and ^{131}I isotopes, from blots and TLC plates to gels and tissue sections — may be analyzed quickly and accurately with three easy steps.

STEP 1: Image acquisition can be accomplished either radioanalytically or optically. Our new optical imaging system analyzes autoradiograms and stained and dyed samples.

STEP 2: The image is enhanced for color, contrast and resolution.

STEP 3: Analysis. For example: Quantitation, Microbiology cluster analysis, Protein Typing, DNA Typing, etc.

More than two hundred installations in laboratories around the world have proven the reliability of AMBIS, the leader in image acquisition and quantitation. Your investment in an AMBIS System is protected with continual upgrading of core and special applications software packages and a modular system design. For more information, call us toll free (800) 88-AMBIS (800-882-6247).

Circle No. 51 on Readers’ Service Card
New Year’s Resolutions and Future Shock

As I sit down to the momentous task of preparing my 1991 New Year’s resolutions, it occurs to me that modern science has made obsolete many of the maxims by which sincere and conscientious people such as myself have guided our lives. Although scientists are expected to alter the technologies of nutrition, communication, locomotion, and the like, we assume that the homilies identified with personal rectitude and moral uplift will remain inviolate. Yet viewed against the advances in society, these homilies become testimonial to the rapidity of change.

“Don’t count your chickens before they’re hatched.” The modern chicken will have been analyzed by ultrasound and amniocentesis, will have had its sex determined and its DNA sequenced. It will not only have been counted but discounted before it is hatched.

“It’s not over until it’s over.” Of course, most things are over long before they’re over.

Elections, for example. The pollsters are now able to predict every aspect of campaigning, from the type of television commercial that will change voters’ minds to how they will vote on election day. Soon or later, we will save a great deal of money by simply eliminating elections.

“Speak softly and carry a big stick.” The updated version of this old maxim would certainly be, “Speak into the microphone and carry an AK47.” The congressional version is, “Speak loudly and notify everyone you won’t use the stick.”

“Neither a borrower nor a lender be.” People who do not have plastic cards and mortgages, and who have not invested in some go-go get-rich-quick scheme, are certain to spend their lives paying taxes, sending their children to school, and fading into that unrecognized middle known as the backbone of America. In an up-front society, backbones never get mentioned.

“Beauty is in the eye of the beholder,” can be modernized to, “I’ve never seen a billboard I didn’t like.”

“Eat, drink, and be merry, for tomorrow we die.” It is of course important to keep eating and drinking, but no one can be merry about it, because we now know that food and drink are filled with carcinogens, teratogens, and fat. Since life expectancy keeps steadily going up, “tomorrow” is obviously interpreted as sometime between 114 and 116 years old. While you can plan on living longer, you should be extremely morose about it, and point out that the bibronic plague was trivial compared to the trials of those dying of Alar in apples and the red dye in maraschino cherries.

“Don’t shoot until you see the whites of their eyes.” In a world with launch-on-warning missiles and satellite snooping, by the time you see the whites of their eyes the fat lady is singing.

“Plus ça change, plus c’est la même chose.” That is generally regarded as a tranquilizer, which implies that technology changes but human nature remains invariant. But even that’s no longer true. In an era of computers, DNA sequences, nuclear missiles, and population explosions, the relationships between human beings are changing. The follies of the past—prejudice, chauvinism, exploitation, complacency—have different faces in a crowded and technologically advanced world. Modern science is providing us with the knowledge about our environment and ourselves that may teach us to avoid those follies, but whether we are willing to use our new knowledge of human motivation is not clear. Sometimes that knowledge leads to politically unpopular conclusions, such as the urgent need to find alternatives to fossil fuels. Everyone is for fuel efficiency. No one is in favor of restrictions on building locations to make mass transportation economically feasible. Then the temptation is to give moralistic reasons for avoiding harsh reality. The “right to have a house where I want it” and the “right to drive to work” are great moral and conflicting policies.

The good solution may be labeled “scientific,” implying that the cold-blooded brain is at work, and the easy solution may be called “humane,” implying that the caring and empathetic heart is making the decision. In the long run, however, facing scientific facts may be more humane than clinging to comforting anachronisms.

So perhaps there is at least one proverb that has not been changed by time: “Necessity is the mother of invention.” Let us, therefore, guide ourselves in 1991 so that we can have the will to recognize the necessity and the resourcefulness to provide the inventions.

—DANIEL E. KOSHLAND, JR.
Getting the right information is important. Getting all the right information is imperative when your research entails vital life science decisions. Otherwise, you're just wasting time and money.

When you're searching online for information on biological and biomedical research, you'll get it right the first time through one source — BIOSIS Previews, covering citations from approximately 9,000 life science serials from more than 100 countries.

COMPREHENSIVE.

ON TARGET.

RELIABLE.

BIOSIS PREVIEWS.

Can you afford to depend on anything else?

Call Today!

1-800-523-4806 (USA except PA)
(215) 587-4800 (worldwide)

DNA by Operon.

Right Price.
Right Now.

Now the world's leading supplier of synthetic DNA is also the price leader. Operon's custom DNA is now $3.60 per base with a $20.00 set-up fee per sequence, and free domestic delivery. Same outstanding customer service. Same high product quality. New low price. Call for your free researcher kit.

1-800-688-2248

OPERON TECHNOLOGIES, INC.
1000 Atlantic Ave., Suite 108
Alameda CA 94501
Tel. (415) 865-8644 Fax. (415) 865-5255 – NIH/PA 263-0003233

WORLD’S LEADING SUPPLIER OF SYNTHETIC DNA.

Circle No. 98 on Readers’ Service Card

AAAS Minority Scholars

Workshop on Values and Ethical Issues in Science and Technology

The American Association for the Advancement of Science (AAAS) invites minority scholars in academic or other institutions to apply for participation in a workshop of intensive study on the values and ethical issues associated with science and technology. The workshop will be held from July 28 to August 4, 1991 near Washington, D.C.

Workshop participants will explore in depth various minority perspectives on science and technology, how they compare to prevailing perspectives, and the different influences that these perspectives can have on scholarship, individual practices, and policy decisions regarding science and technology. The workshop will also review important theoretical work and research methodologies in ethics and values research, as well as publishing outlets and resources that can help support scholarship in this field.

While persons of any minority group may apply, preference will be given to applicants from the following groups: Asian/Pacific Islander, Black/African-American, Hispanic/Chicano/Puerto Rican/Latino, or Native American/American Indian. Persons with an advanced degree in any field of science, engineering, medicine, law, or the humanities may apply. Participants will receive expenses for travel to and from the workshop, and for accommodations and meals.

For further information or to request an application form, contact A. Crumpton, Directorate for Science and Policy Programs, AAAS, 1333 H Street, N.W., Washington, D.C. 20005; (202) 326-6798.

Deadline for receipt of applications is February 8, 1991.
Hard Copy your PCR products with one-step TA Cloning™…

A Universal System for Cloning PCR Products

Direct hard copy cloning of PCR® products into the multifunctional pCR2000™ vector is now possible with the new TA Cloning kit from Invitrogen. This system eliminates inefficient, time consuming reactions normally involved in cloning PCR products and allows direct cloning of amplified nucleic acids from genomic DNA, cDNA or recombinant lambda, cosmids and YACs.

TA Cloning requires:

- NO purification of PCR products
- NO modification of primers to incorporate restriction sites
- NO restriction enzyme digestion
- NO modifying enzymes
- NO sequence information

The TA Cloning system from Invitrogen allows blue/white color selection of recombinants from the pCR2000 vector and is useful for most PCR reactions including:

- Symmetric PCR
- Inverse PCR
- Alu PCR
- Sequence independent PCR
- mRNA PCR
- Sequence Tagged Site PCR
- Anchored PCR

TA Cloning is an ideal system for direct sequencing and expression of PCR products and provides a means of safeguarding precious samples for future analysis, probe generation or other manipulations. The prepared pCR2000 vector is designed to take advantage of the universal ragged ends generated by the terminal transferase activity inherent in thermophilic polymerases. Each kit contains prepared pCR2000 vector, ligation reagents and competent E. coli for 20 reactions. For more information on these and other PCR products call;

Toll Free 1-800-544-4684
11588 Sorrento Valley Road • #20
San Diego, CA 92121

Invitrogen CORPORATION

*PCR is covered by U.S. Pat. #s 4,683,202 and 4,683,195 issued to Cetus Corporation.
Circle No. 74 on Readers’ Service Card
In college, you would have killed for MathCAD. So why aren’t you calculating with it now?

100,000 engineers and scientists already let MathCAD do their calculations for them.

Now that college is far behind you, perhaps it’s time you graduated from spreadsheets, calculators and programming.

Because in today’s working world of engineering and science, there’s no time for anything less than MathCAD. The software that lets you perform engineering and scientific calculations in a way that’s faster, more natural, and less error-prone than any calculator, spreadsheet, or program you could write yourself.

Thanks to MathCAD’s live document interface, you can enter equations anywhere on the screen, add text to support your work, and graph the results.

It also comes complete with over 120 commonly used functions built right in. Perfect for creating complex equations and formulas, as well as exponentials, differentials, cubic splines, FFTs and matrices.

You get three-dimensional plotting, vivid graphing, and the ability to import HPGL files from most popular CAD programs, including AutoCAD®.

Done calculating? MathCAD prints all your analyses in presentation-quality documents, even on PostScript® compatible printers.

All of which has made MathCAD far and away the best-selling math software in the world. In fact, it’s used by over 100,000 engineers and scientists—just like you.

There’s MathCAD for the PC. MathCAD for the Mac, written to take full advantage of the Macintosh® interface. And a Unix® version that utilizes the speed and unlimited memory of your Unix workstation.

We also have Applications Packs for Advanced Math, Statistics, Mechanical, Chemical, and Electrical Engineering. Each is a collection of adaptable mathematical models, designed to let you start solving your real world problems right away.

For a free MathCAD demo disk, or upgrade information, dial 1-800-MATHCAD (in MA, 617-577-1017). Or see your software dealer.

Available for IBM® compatibles, Macintosh computers, and Unix workstations.

TM and ® signify manufacturer’s trademark or registered trademark, respectively.

1-800-MATHCAD

MathCAD®

MathSoft, Inc., 201 Broadway, Cambridge, MA 02139

U.K.: Adept Scientific 0462-480055; France: ISECEGOS 1-46092766; Germany: Softline 07802-4036; Japan: CRC 03-665-9762; Finland: Zenex Oy 90-692-7677; Italy: Channel 02-4229441. PSE

Circle No. 50 on Readers’ Service Card
Pure mRNA in Minutes...

...Directly from Small or Large Samples of Cells or Tissue.

FastTrack™ and MicroFastTrack™ set the industry standard in high quality mRNA isolation.

MicroFastTrack™: 20 Reactions
- Ideal for PCR, Northern and cDNA synthesis
- Isolation from samples ranging in size from $10^{-3} \times 10^6$ cells or 10-250mg of tissue.
- Reproducible yields of high quality mRNA.

FastTrack™: 6 Reactions
- mRNA isolation for Northern, cDNA, library construction, PCR, microinjection, RNA protection studies and *in vitro* translation.
- Isolation from samples ranging in size from $10^{-7} \times 10^8$ cells or 0.4-1.0 gram of tissue.
- Fast, efficient recovery of large amounts of polyA+ RNA from a variety of sources.

Both systems offer:
- High yields of intact mRNA with low ribosomal contamination.
- Eliminate the need for total RNA isolation or the use of toxic chemicals.
- The most cost effective means of generating high quality mRNA.
- Consistency, convenience and the fastest isolation time.

For the very best in direct mRNA isolation FastTrack™ and MicroFastTrack™ are the choice of thousands of research labs worldwide. When the quality of your mRNA is important, turn to the original source for purity, reliability and convenience, turn to Invitrogen.

Toll Free 1-800-544-4684

Invitrogen CORPORATION

11588 Sorrento Valley Road • Suite 20 • San Diego, CA 92121

British Biotechnology Limited, UK, Tel: 44-865781045 • AMS Biotechnology, UK, Tel: 44-993822860

Biotrade, Austria, Tel: 43-2228284694 • Funakoshi Pharmaceuticals, Japan, Tel: 81-56841622 • Celbio, Italy, Tel: 39-24048646 • Kebo Lab AB, Sweden, Tel: 46-66213400 • BDH Inc., Canada, Tel: 800-268-2129

Medos Company Pty Ltd, Australia, Tel: 61-38083877

patent pending. mRNA model courtesy of Biosym
The Neurosciences
Challenges for the '90s
A 3-Day Seminar at the AAAS Annual Meeting in Washington, DC
Seminar dates: 16 – 18 February 1991

Twenty-three leading researchers in the neurosciences will discuss the areas of the field expected to be most productive in the 1990s.

Session topics (presiders in parentheses): Stimulus-Transcription Coupling in Neuronal Cells (James I. Morgan) • Structure and Function of Potassium Channels (Arthur M. Brown) • Olfaction and Taste (Gordon M. Shepherd) • Activity-Dependent Plasticity in Development and Learning (Carla J. Shatz) • Cognitive Processes (Larry R. Squire) • Molecular Basis of Neurological Disease (Joseph B. Martin). The plenary lecture will be delivered by Shosaku Numa of the Kyoto University Faculty of Medicine.

For a complete program and a registration form, see any of the following issues of Science magazine: 19 October, 26 October (insert), or 7 December; or write to AAAS Meeting Promotion Dept., Room 815, 1333 H Street, NW, Washington, DC 20005.
Rehabilitation for Burt?

Two British scholars—apparently unbeknownst to each other—have reassessed the famous “Burt scandal” and come up with a surprising conclusion: British psychologist Sir Cyril Burt, whose work on the genetics of IQ stirred fierce antagonsism and, ultimately, allegations of fraud, may have gotten a bum rap.

Burt, who died in 1971 at the age of 88, was a pioneer in the use of twins to explore the heritability of IQ. In the mid-1970s, however, scholars began to question the authenticity of his data, and an exhaustive 1979 biography by Leslie Hearnshaw seemed to clinch the case that Burt had fabricated much of his work.

Now, however, two new books have entered the fray: *The Burt Affair*, by psychologist Robert B. Joyson of the University of Nottingham, and *Science, Ideology, and the Media: The Cyril Burt Scandal*, by sociologist Ronald Fletcher of Reading University. According to psychologist Arthur Jensen of the University of California at Berkeley, who has reviewed both works in a chapter for an upcoming book on research fraud, both scholars conclude that the evidence against Burt does not fully substantiate accusations of fraud.

Many of Hearnshaw’s charges against Burt were based on second-hand information, the authors write, much of it from people opposed to Burt and his ideas. Furthermore, while Hearnshaw said all data reported by Burt after 1955 were fraudulent, the authors believe that the data had been collected earlier and mislaid during wartime moves. Much of Hearnshaw’s credibility is based on his access to Burt’s diaries, but Joyson and Fletcher found that the diaries add little to the picture.

Jensen, a Burt admirer who was among the first to raise questions about the psychologist’s data (see *Science*, 26 November 1976, p. 916), says that although some people have always felt Burt was unjustly condemned, “I myself was quite convinced by Hearnshaw’s biography.” Now he says he thinks Hearnshaw’s conclusions are open to “reasonable doubt.” Psychologist Robert Plomin of Pennsylvania State University also finds Joyson’s argument “convincing.”

Not so, says Northeastern University psychology chairman Leon Kamin, a vocal critic not only of Burt, but of IQ heritability studies in general. Kamin admits that much of Joyson’s work is sound, but says the author has postulated so many “plausible explanations” for anomalies in Burt’s data that he “seems to stretch credibility beyond the point where a sensible person would want to go.”

Whatever the final verdict, Plomin notes, it will not matter for science since Burt’s conclusions are in line with subsequent research. “The point,” he says, “is that a distinguished scientist may well have been unjustly condemned.”

Science Money Woes in the U.S.S.R.

Academician Roald Sagdeev feels like a U.S. citizen these days. The former Soviet space program guru—turned Gorbachev arms control adviser, then elected member of the Congress of People’s Deputies—now spends 80% of his time teaching at the University of Maryland. But he still worries about his homeland and, in particular, the sorry state of its science.

At a seminar at George Washington University last month, Sagdeev noted that top scientists are leaving the Soviet Union in droves, and predicted that those who stay “will become beggars.” The danger, he says, is that the central government will have no funds for anything besides national defense and essential bureaucratic functions once the restive republics get done stripping it of its powers. And the republics, faced with critical shortages, will be less than eager to divert funds from, say, food supplies to research.

Sagdeev believes the government will be forced to create a national research funding pool and give each republic a vote in the allocation of science rubles. But he predicts that the result will be like Europe’s space program, limited in size and fragmented by parochial interests. He illustrated the point with a parable about the European Space Agency. One day, he said, delegates were debating the funding of an advanced meteorological capability when “the Spanish delegate got up and said, ‘We won’t vote for it: the weather in Spain is always fine.’ Then the Dutch delegate rose: ‘We won’t either, because the weather in Holland is always terrible.’” The result of this “democracy,” according to Sagdeev, is a European space budget that is an order of magnitude smaller than the U.S. budget. That’s exactly what he fears for the U.S.S.R.

NASA’s Wish List

Having successfully launched three shuttles in a row since October, NASA’s confidence is running high. Just how high can be seen in the agency’s new shuttle manifest, released last month. The agency plans to launch 7 flights this year, 8 flights in 1992, and 12 in 1993. The fleet will be bolstered by the addition of the new orbiter Endeavor, scheduled to fly in May 1992. Is this schedule realistic? Thanks to persistent hydrogen leaks that grounded the fleet last summer, NASA launched only six shuttles last year.

<table>
<thead>
<tr>
<th>1991 Flight Schedule for NASA Shuttles</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
</tr>
<tr>
<td>April</td>
</tr>
<tr>
<td>May</td>
</tr>
<tr>
<td>July</td>
</tr>
<tr>
<td>August</td>
</tr>
<tr>
<td>November</td>
</tr>
<tr>
<td>December</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1992 Flight Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
</tr>
<tr>
<td>April</td>
</tr>
<tr>
<td>May</td>
</tr>
<tr>
<td>June</td>
</tr>
<tr>
<td>August</td>
</tr>
<tr>
<td>September</td>
</tr>
<tr>
<td>October</td>
</tr>
<tr>
<td>November</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1993 Flight Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
</tr>
<tr>
<td>February</td>
</tr>
<tr>
<td>March</td>
</tr>
<tr>
<td>May</td>
</tr>
<tr>
<td>May</td>
</tr>
<tr>
<td>June</td>
</tr>
<tr>
<td>July</td>
</tr>
<tr>
<td>September</td>
</tr>
<tr>
<td>September</td>
</tr>
<tr>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
</tr>
</tbody>
</table>
Information for Contributors

The Editors of Science

Manuscripts should be addressed to the Editor, Science, 1333 H Street, NW, Washington, DC 20005. Submit three copies together with a letter of transmittal giving:

1) the names and telephone numbers of the authors;
2) the title of the paper and a statement of its main point;
3) the names, addresses, telephone numbers, and fields of interest of four to six persons outside your institution who are qualified to referee the paper;
4) the names of colleagues who have reviewed the paper;
5) the total number of words (including text, references, and figure and table legends) in the manuscript; and
6) a statement that the material has not been published and is not under consideration for publication elsewhere.

In addition, include with your manuscript:

1) any paper of yours that is in press or under consideration elsewhere and includes information that would be helpful in evaluating the work submitted to Science;
2) written permission from any author whose work is cited as a personal communication, unpublished work, or work in press but is not an author of your manuscript;
3) for manuscripts based on crystallographic data, two copies of the coordinates.

By submitting a manuscript, an author accepts the responsibility that all those listed as authors of a work have agreed to be so listed, have seen and approved the manuscript, and are responsible for its content.

Before being reviewed in depth, most papers are rated for their interest and overall suitability by a member of the Board of Reviewing Editors. Papers submitted in disciplines for which there is no appropriate member of the Board of Reviewing Editors may be screened by editorial staff members in consultation with outside experts. Papers that are not highly rated are returned to the authors within about 2 weeks; the title page and abstract from one copy are retained for our files. Approximately 40% of submitted papers are reviewed in depth by two or more outside referees as well as a statistician. Reviewers are telephoned prior to being sent a paper and are expected to decline to review if they are not qualified or there is a possible conflict of interest. Reviewers are expected to return their comments within 2 weeks. Reviewers are instructed that the manuscript is a privileged document that is not to be disseminated or exploited. It is the policy of Science that reviewers are kept anonymous.

When the review process is complete, the manuscript and reviewers' comments are discussed by the editors at a weekly meeting. Manuscripts are evaluated in terms of their technical merit as well as their merit in relation to other papers under consideration. Authors are notified of acceptance, rejection, or need for revision, usually within 6 to 10 weeks. Accepted papers are edited to improve accuracy and clarity and to bring them within the specified length limits. When the author's meaning is not clear, the editor may consult the author by telephone; when editing is extensive, the manuscript may be returned to the author for approval. Papers cannot be resubmitted over a disagreement on interest level or relative merit. If the author can demonstrate that a paper was rejected on the basis of serious reviewer error, resubmission will be considered.

Conditions of Acceptance

When a paper is accepted for publication in Science, it is understood that (i) any materials and methods necessary to verify the conclusions of the experiments reported will be made available to other investigators under appropriate conditions; (ii) sequence and crystallographic data will be offered for deposit to the appropriate data bank and the identifier code will be sent to Science for inclusion in the published manuscript (coordinates should be released no later than 1 year after publication); and (iii) the paper will remain a privileged document and will not be released to the press or the public before publication. If there is a need in exceptional cases to publicize data in advance of publication, the AAAS Office of Communications (202-326-6440) must be consulted.

Selection of Manuscripts

In selecting papers for publication, the editors give preference to those of novelty and general significance that are well written, well organized, and intelligible to scientists in different disciplines. An attempt is made to balance the subject matter in all sections of Science. Membership in the AAAS is not a factor in selection.

Categories of signed papers include general articles, research articles, reports, letters, technical comments, book and software reviews, perspectives, and policy forums.

General Articles. General articles (3000 to 5000 words or three to five printed pages) are expected to (i) review new developments in one field that will be of interest to readers in other fields; (ii) describe a current research problem or a technique of interdisciplinary significance; or (iii) discuss some aspect of the history, logic, policy, or administration of science. Readers should be able to learn from a general article what has been firmly established and what are unresolved questions or future directions.

Many of the general articles are solicited by the editor, but unsolicited articles are welcome. Both solicited and unsolicited articles undergo review.

General articles should include a note giving the authors' names, titles, and addresses; a summary (50 to 100 words); an introduction that outlines for the general reader the main point of the article; and brief subheadings to indicate the main ideas. The reference list should not be exhaustive; a maximum of 50 references is suggested. Figures and tables together with their legends should occupy about one printed page.

Research Articles. A research article (up to 4000 words or four printed pages) is expected to contain new data representing a major breakthrough in its field. The article should include an author note, abstract, introduction, and sections with brief subheadings. A maximum of 40 references is suggested. Figures and tables together with their legends should occupy about one printed page.

Reports. Reports (up to 2500 words or three printed pages) are expected to contain important research results. Addresses for all authors should be listed on the title page and the corresponding author should be indicated by an asterisk. Reports should include an abstract (no more than 100 words) and an introductory paragraph. A maximum of 30 references is suggested. Figures and tables together with their legends should occupy no more than one of the pages.

Letters. Letters are selected for their pertinence to material published in Science or because they discuss problems of general
interest to scientists. Letters about material published in *Science* may correct errors, provide support or agreement, or offer different points of view, clarifications, or additional information. Personal remarks about another author are inappropriate. Letters may be reviewed by outside consultants. Letters selected for publication are intended to reflect the range of opinions received. The author of the paper in question is usually given an opportunity to reply.

All letters are acknowledged by postcard; authors are notified if their letters are to be published. Preference is given to short letters (between 250 and 500 words). Letters accepted for publication are frequently edited and shortened in consultation with the author.

Technical Comments. Technical comments (up to 500 words) may criticize articles or reports published in *Science* within the previous 6 months or may offer useful additional information. Minor issues should be resolved by private correspondence. The authors of the original paper are asked for an opinion of the comment and are given an opportunity to reply in the same issue if the comment is published. Comments and replies are subject to the usual reviewing and editing procedures. Priority disputes may undergo extensive review and are published only when action is recommended.

Book and Software Reviews. The selection of books and software packages to be reviewed and of reviewers is made by the editors. Instructions and length specifications accompany items to be reviewed when they are sent to reviewers.

Manuscript Preparation

Typing. Use double-spacing throughout the text, tables, figure legends, and references and notes, and leave margins of at least 2.5 centimeters. Put your name on each page and number the pages starting with the title page.

Titles. Titles and subheadings should be a descriptive clause, not a declarative sentence or a question. For general articles the maximum length is 80 characters and spaces; for research articles and reports the maximum is 100 characters.

Summaries or abstracts. These should include a sentence or two explaining to the general reader why the research was undertaken and why the results should be viewed as important. The abstract should convey the main point of the paper and outline the results or conclusions.

Text. A brief introduction should indicate the broad significance of the paper and be intelligible to readers in different disciplines. Technical terms should be defined. All tables and figures should be cited in the text in numerical order.

Symbols and abbreviations. Define all symbols, abbreviations, and acronyms the first time they are used.

Units of measure. Use metric units. If measurements were made in English units, give metric equivalents.

References and notes. Number references and notes in the order in which they are cited, first through the text and then through the table and figure legends. List a reference only one time. References that are always cited together may be grouped under a single number. Use conventional abbreviations for well-known journals; provide complete titles for other journals. Do not use op. cit. See "Science Reference Style" (page 37) for examples.

Unpublished observations. Reference to unpublished data should be given a number in the text and placed, in correct sequence, in the references and notes.

Acknowledgments. Gather all acknowledgments into a brief statement at the end of the references and notes.

Informed consent. Investigations on human subjects must include a statement indicating that informed consent was obtained after the nature and possible consequences of the studies were explained.

Animal welfare. Authors using experimental animals must state that their care was in accordance with institutional guidelines. For animals subjected to invasive procedures, the anesthetic, analgesic, and tranquilizing agents used, as well as the amounts and frequency of administration, must be stated.

Figures. For each figure submit three high-quality prints, laser prints, or original drawings of sufficient size to permit relettering but not larger than 22 by 28 centimeters (8½ by 11 inches). On the back of every figure write the first author’s name and the figure number and indicate the correct orientation. Manuscripts with oversized figures will be returned to the author without review. Photocopies of figures are not acceptable; transparencies, slides, or negatives cannot be used because they cannot be sent to reviewers. See section on preparation of figures for details.

On acceptance of a paper, authors requesting the use of color will be asked to pay $600 for the first color figure or figure part and $300 for each additional figure or figure part to help defray the cost of obtaining color separations. There will be an additional charge for color figures in the reprints.

Tables. Tables should supplement, not duplicate, the text. They should be numbered consecutively with respect to their citation in the text. Each table should be typed, with its legend (double-spaced) above the table. Give each column a heading with units of measure indicated in parentheses. Do not change the unit of measure within a column.

Equations and formulas. Use quadruple-spacing around equations and formulas that are to be set off from the text. Define all symbols and number all equations.

Uncertainties and reproducibility. Evidence that the results are reproducible and the conditions under which this reproducibility (repetition) was obtained should be explicitly stated. The effect of limitations in experimental conditions on generalizability of results should be discussed. Uncertainties should be stated in terms of variation expected in independent replications of the experiments; they should include an allowance for possible systematic error arising from inadequacies in the assumed model and other known sources of possible bias. Probabilities from statistical tests of significance should not replace the reporting of results and associated uncertainties.

Permissions and copyright. Illustrations and tables reprinted from other publications must be credited. It is the author's responsibility to obtain written permission with the complete citation from the copyright owner (usually the publisher) to reprint such illustrations in *Science*. Papers are not sent to the printer until copies of all permission letters have been received by the editorial office.

Copyright law requires that we obtain copyright transfer from authors of each paper published in *Science*. Copyright forms are sent to all authors prior to acceptance and must be signed and returned to the editorial office immediately. U.S. government employees sign the section of the form stating exemption from copyright laws. Alterations to or substitutions for our form are not acceptable.

Printing and Publication

Proofs and reprints. One set of proofs is sent to the authors. An order blank for reprints accompanies the proofs.

Scheduling. Papers are scheduled for publication after *Science* has received corrected proofs from the authors. Papers with tables or figures that present problems in layout, or with cover pictures, or that exceed the length limits may be subject to delay.

Cover Photographs

Particularly good photographs that pertain to a paper being submitted can be considered for use on the cover. Submit prints (not slides, negatives, or transparencies) with the manuscript.
Figures

Most figures will be printed at a width of 5.9 cm (2.3 inches or 1 column) or 12.2 cm (4.8 inches or 2 columns) in reports and at a width of 9.1 cm (3.8 inches or 1 column) in articles. Some illustrations (for example, bar graphs, simple line graphs, and gels) may be reduced to a smaller width. Please provide figures that are about 50% larger than the expected final size but no larger than 22 by 28 cm (8.5 by 11 inches). Symbols and lettering should be large enough to be legible after reduction.

Composite figures should be labeled A, B, C, . . . If mounting is necessary, use very flexible cardboard.

Legends should be typed double-spaced in numerical order on a separate page. No single legend should be longer than one page. Nomenclature, abbreviations, symbols, and units used in a figure should match those used in the text and should be consistent with those used in the other figures.

The figure title should be given as the first line of the legend rather than on the figure.

Line drawings should be labeled on the ordinate and abscissa with the parameter or variable being measured, the units of measurement, and the scale. Scales with large or small numbers should be presented as powers of 10. Definitions of symbols should usually appear in the figure legend and not in the figure. Simple symbols (circles, squares, triangles, and diamonds, solid or open) will best survive reduction.

Recommended symbols at the size they should appear after reduction:

- ○ ○ □ △ △

Avoid the use of light lines, shading, and stippling; light lines and gray shading may disappear when the figure is photographed at high contrast, and stippled areas may appear black when greatly reduced. Use heavy lines or boxes for emphasizing or marking off areas of the figure, and use black, white, hatched, and crosshatched designs in place of stippling (for example, in bar graphs or ball-and-stick molecular models). Authors using computer graphics should choose screens between 20 and 60%.

Halftones, such as electron micrographs, should be submitted as high-quality prints or originals (do not send irreparable artwork). If possible, use scale bars in place of, or in addition to, magnifications. In gels, the lanes should be numbered and identified by number in the figure legend.

For color art please provide a positive slide, if possible, and a print. Indicate positioning, lettering, and cropping limits on the print. For composite figures, send the original composite board rather than a print if the quality of the original is much better than that of the print. Do not send irreplaceable artwork.

Lettering in Helvetica or Times Roman font is preferable. Use boldface type for axis labels and for the labels A, B, C, . . . in composite figures; use italic type only as it would be used in the text (for example, for variables and genes). The first letter of each entry should be upper case; otherwise, use upper case letters as they would be used in the text (for example, for acronyms). Avoid wide variation in type size within a single figure. In the printed version of the figure, letters should be about 7 point (2-mm high).

This is 7-point type.

Sequences may be reduced to 5- or 6-point type, so clarity of the typeface in the original is essential. There should be about 130 characters (including spaces) per line for a sequence occupying the full width of the printed page and about 84 characters per line for a sequence (in a report) occupying two columns.

Tables

Tables should be typed double-spaced and numbered in the order of citation in the text; each table should be on a separate page and have a brief descriptive title as the first sentence of the legend. Three horizontal lines are used: at the top and at the bottom of the table and between the column headings and the table body. Vertical lines are not used between the columns.

Every vertical column should have a column heading consisting of a title with the unit of measure in parentheses. Units should not change within a column. Centered headings of the body of the table can be used to break the entries into groups. (See the section on lettering above for use of italic type and uppercase letters.)

The table legend should be typed above the table and should contain information relevant to the whole table.

Footnotes should contain information relevant to specific entries or parts of the table. The sequence of symbols for footnotes follows: *, †, ‡, §, ¶, ††, ‡‡, **, †††, ‡‡‡, . . .

Meeting of the Society for Neuroscience, Anaheim, CA, 10–15 October 1984. Sponsoring organization should be mentioned if it is not part of the meeting name.

Theses

Books

MilliGen/Biosearch gives RNA synthesis a quantum push forward.

MilliGen/Biosearch, in collaboration with the industry's key investigators, pioneered the research and development of RNA synthesis. Our complete RNA Synthesis Package is the only one available today.

We've dramatically improved the quality of automated RNA synthesis by producing the industry's purest monomers and reagents. (High resolution mass spectroscopy and elemental analysis attest to the purity of our monomers, while the isomeric purity of every batch of RNA amidites is proven by NMR.) Only chemistry of this quality - proven by T$_2$RNase digest and NMR - can assure biologically active RNA.

Give your RNA work a quantum push forward in such areas as antisense and ribozyme research, tRNA structure and function studies, direct expression studies, as well as improved hybridization assays.

Free tRNA-shirt or RNA synthesis cartridge. Mention this ad with your order for an RNA amidite kit and receive a tRNA-Shirt (s,m,l,xl). Orders of $2000 also receive a cartridge pre-programmed with the RNA synthesis protocol for the MilliGen/Biosearch Cyclone™ Nucleic Acid Synthesizer. Contact us today: call 1-800-872-0071, or write to MilliGen/Biosearch, 186 Middlesex Turnpike, Burlington, MA, U.S.A. 01803.
Fig. 7. Dynamic focus correction in spot-scan images. Two spot-scan images of the same specimen tilted at 45° were recorded, with the focus correction switched on in (A, B, and C), and off in (D, E, and F). Optical transforms from the same areas of the two micrographs are shown (A and D, area at top of micrograph; B and E, middle; C and F, bottom).

pattern still compensates for the defocus gradient as before. The benefit of dynamic adjustment is that the defocus value can be kept within a range such that the spatial coherence envelope function (9) does not take too severe a toll on the signal (contrast) at high resolution.

In this context, the use of higher accelerating voltage should be advantageous in reducing the defocus change across the small spot. The shorter electron wavelength should allow formation of a smaller spot and, at the same time, increase the depth of field.

Conclusion

In high-resolution imaging of specimens that are sensitive to damage or charging, spot-scan illumination can provide an important improvement over conventional illumination. This finding has been confirmed in several laboratories where spot-scan methods have been implemented with a wide variety of organic specimens. Although the best conventional images may be of the same high quality as the spot-scan images, the conventional yield of very good images has been painfully low. In other cases, spot-scan images provide resolution that is unattainable with conventional illumination. Much of our work in electron crystallography and other high-resolution studies has been limited by the low S/N ratio in the image. The ability that spot-scan imaging provides to obtain images reliably and routinely with nearly the theoretically full S/N ratio represents a major advance in the case with which structural studies can now proceed.

REFERENCES AND NOTES

27. This work was supported in part by the Office of Health and Environmental Research, U.S. Department of Energy, under contract DE-AC03-76SF00098 and by NIH research grant PO1-GM36884. Polyethylene specimens were kindly provided by D. Vesely, PhoE porin by B. Jap, light-harvesting complex by W. Kuhlbrandt, TMV by D. L. D. Caspar, and polyisoprene by A. J. Heeger.
Abbreviations for the amino acid residues are A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.

31. P. A. Karplus and J. R. Herriott, in Flavins and Flavoproteins, V. Massey and C. H. Williams, Jr., Eds. (Elsevier/North-Holland, New York, 1982), pp. 28–31. Figure 2 of this paper shows electron density for enzyme-bound NADPH.
38. G. L. Ulrich and J. L. Markley, paper presented at 9th International Conference on Magnetic Resonance in Biological Sciences, Bendor, France, 1980. Actually two phosphate or sulfate ions appear to be bound in the crystal, one near His98 and one near Arg238 where the 2'-phosphate of 2'-phospho-AMP binds.

Many readers will be aware that research on the squid giant axon provided the foundation for our current understanding of many roles played by ion channels in regulating activities of living cells. Few life scientists, including squid specialists, however, are likely to appreciate the range and number of basic discoveries that also have stemmed from research on squid and its cephalopod cousins, the octopus and the cuttlefish. Much of this work has utilized the giant axon system to provide insights into active transport of ions and metabolites across cell membranes, microtubule-based organelle transport, and synaptic transmission, but there have been numerous contributions in other areas as well, such as heme-cyanin-based oxygen transport.

This broad body of work is emphasized in a unique way in the 22 papers that constitute Squid as Experimental Animals, the long-overdue follow-up to Guide to Laboratory Use of the Squid published in 1974 by the Marine Biological Laboratory at Woods Hole. Each chapter is written with two goals: to review the scientific results in a particular area of research and to provide a concise, practical summary of the relevant experimental techniques. Thus, this book is intended to serve both as an up-to-date information source about cephalopod biology and as a sophisticated laboratory guide.

In both of these capacities, Squid is a success. Divided into six major sections, the new book covers a broad spectrum of squid biology, with major emphasis on nervous and cell-biological aspects of the giant axon and sensory systems. Most of the chapters hit the intended mark and are well written, comprehensive, and richly documented with references. As in any collection there are, of course, both highlights and disappointments.

In Evolution, History and Maintenance (part 1; four chapters), a fine chapter on maintenance, rearing, and culture discusses important problems involved in ensuring a supply of healthy animals and the advantages of alternative cephalopod species for particular research needs. The two chapters that make up Mating Behavior and Embryology (part 2) add little information beyond that appearing in the 1974 guide. Neural Membranes (part 3; five chapters) includes a wealth of detailed technical information for those interested in pursuing classical approaches (internal perfusion/dialysis and voltage clamp) to giant axon and synapse physiology. One chapter introduces the "cut-open axon" to modern patch clamp techniques in an elegant way. Cell Biology (part 4; five chapters) features some solid chapters devoted to the cytoskeleton and axoplasmic transport, lipid metabolism in the nervous system, and isolation of synaptosomes from the brain. Sensory Systems (part 5; three chapters) provides a nicely balanced treatment of structural, functional, and developmental aspects of the visual and statocyst systems. Finally, Integrated Systems (part 6; three chapters) sports the chapter "Squid as elite athletes: locomotory, respiratory, and circulatory integration," an intriguing account of the squid's high-speed, jet-propelled life style and the challenges it imposes.

The only real problem with Squid is the seemingly arbitrary choice of topics. Obviously, all areas of squid experimental biology could not be covered, and the editors excuse the omissions with "lack of space." Judicious editing could have generated a good bit of space, however. For example, some experimental methods are described in unnecessary detail and some appear redundantly—there are no fewer than four treatments (15 pages total) of how to remove the giant axon from Loligo pealei. More significantly, several chapters do not seem appropriate for a work of this sort. While it may be amusing to learn the details involved in the naming of L. pealei, this information could have been profitably replaced by material designed to increase the utility of the volume to new students of the squid, such as a good basic description of internal anatomy. One must also question the inclusion of a chapter (on tissue culture) based entirely on unpublished work when rich areas like learning in cephalopods are excluded.

Despite its shortcomings, this book is an important contribution. These chapters go a long way toward putting what we know about squid and their use as experimental animals into one accessible volume for the researcher or advanced student. This is a valuable accomplishment, not only because it will stimulate new work on many aspects of squid biology, which is of intrinsic importance, but also because it will point the way to additional possibilities of using these animals as model systems for problems in vertebrate physiology. In today's biomedical research world, where studies on mammalian systems are predominant, it is important to remember what squid, and other invertebrates, have taught us and to retain vision enough to sense what secrets they still hide.

William F. Gilly
Stanford University,
Hopkins Marine Station,
Pacific Grove, CA 93950

Books Received

