The Optima™ TLX ultracentrifuge shares many features with our L and XL floor models.

Like a rugged, imbalance-tolerant drive. A cooling system with no CFCs. And convenient step programming.

But this smallest Optima redefines overachievement by packing its 120,000 rpm/625,000 g in a tabletop size. It can be used virtually anywhere, including under a fume hood, and achieve separation* efficiencies only possible with micro-ultracentrifugation:

- Protein separations in 55 minutes.
- Subcellular fractions in 20 minutes.
- Viruses in 60 minutes.
- Membranes in 15 minutes.
- DNA in 2.5 hours.
- RNA in 1 hour.

The Optima TLX. Another useful innovation from Beckman. Contact Beckman Instruments, Inc., 1050 Page Mill Road, Palo Alto, CA 94304. (800) 742-2345. Offices worldwide.

*Ask for document DS-691F for a bibliography of over 600 application references.

© 1991 Beckman Instruments, Inc.
INTRODUCING THE DNA THERMAL CYCLER 480.

More efficient amplification in less time and with less reagents. The new DNA Thermal Cycler 480 System, with our GeneAmp® Reagents and optimized two-temperature PCR protocol, gives you enhanced performance every day, on every sample. All backed by the Perkin-Elmer Cetus PCR Performance Guarantee. A commitment that brings you the expertise and resources of the industry leader.

The DNA Thermal Cycler 480. Continuing the DNA Thermal Cycler's standards of quality and excellence. For technical information and to order either system in the U.S., contact your local Perkin-Elmer sales representative or call 1-800-762-4001. For literature in the U.S., call 1-800-762-4000. Outside the U.S., contact your local Perkin-Elmer sales representative.
This Week in Science

Editorial

Technology for America's Future

Letters

ScienceScope

Sweeping overhead rates under the rug; gambling with Poker Flat science; etc.

News & Comment

Baltimore Throws in the Towel ■ David Baltimore's Mea Culpa

Science Under Wraps in Prince William Sound

Science Academy Elects New Members

Briefings: Hidden Costs of the Space Station ■ A Big Gift from Big Oil ■ A Billion Bucks for Materials ■ Congressional Day ■ Ten Years for the Brain ■ Cuban AIDS Control ■ Biotechnology Execs Earn More ■ Correction

Research News

Engineering Dogma Gives Way to Chaos ■ Flying High with Chaos Control

A New Ball Game in Nuclear Physics

How Peptide Hormones Get Ready for Work

Praying Mantises Play Top Gun

Sex and the Single Gene

Deep Rocks Stir the Mantle Pot

Articles

Reproductive Behavior and Health in Consanguineous Marriages: A. H. Bittles, W. M. Mason, J. Greene, N. A. Rao

Neutron Scattering: Progress and Prospects: J. D. Axe

Diversity of G Proteins in Signal Transduction: M. I. Simon, M. P. Strathmann, N. Gautam

Research Articles

Zinc Finger–DNA Recognition: Crystal Structure of a Zif268-DNA Complex at 2.1 Å: N. P. Pavletich and C. O. Pabo

A New Cofactor in a Prokaryotic Enzyme: Tryptophan Tryptophylquinone as the Redox Prosthetic Group in Methylamine Dehydrogenase: W. S. McIntire, D. E. Wemmer, A. Chistoserdov, M. E. Lidstrom

■ SCIENCE (ISSN 0036-8075) is published weekly on Friday, except the last week in December, by the American Association for the Advancement of Science, 1333 H Street, NW, Washington, DC 20005. Second-class postage (publication No. 484460) paid at Washington, DC, and additional mailing offices. Copyright © 1991 by the American Association for the Advancement of Science. The title SCIENCE is a registered trademark of the AAAS. Domestic individual membership and subscription ($1 issues): $75 ($50 allocated to subscription). Domestic institutional subscription ($1 issues): $150. Foreign postage extra: Canada $46, other (surface mail) $48, air freight $90. First class, airmail, school-year, and student rates on request. Change of address: allow 6 weeks, giving old and new addresses and 11-digit account number. Postmaster: Send change of address to Science, P.O. Box 1723, New York, NY 10077. Single copy sales: $6.00 per issue prepaid includes surface postage, Guide to Biotechnology Products and Instruments, $20. Bulk rates on request. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by AAAS to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $1 per copy plus $0.10 per page is paid directly to CCC, 27 Congress Street, Salem, Massachusetts 01970. The identification code for Science is 0036-8075/91 $1 + .10. Science is indexed in the Reader's Guide to Periodical Literature and in several specialized indexes.

■ The American Association for the Advancement of Science was founded in 1848 and incorporated in 1874. Its objectives are to further the work of scientists, to facilitate cooperation among them, to foster scientific freedom and responsibility, to improve the effectiveness of science in the promotion of human welfare, to advance education in science, and to increase public understanding and appreciation of the importance and promise of the methods of science in human progress.
COVER Crystal structure of a zinc finger–DNA complex from the mouse protein Zif268. The view is down the axis of the double-helical DNA and emphasizes the symmetry of the complex. The DNA is blue; individual zinc finger domains are red, yellow, and purple; and zinc atoms are light blue. Similar DNA-binding domains occur in a large family of eukaryotic regulatory proteins. See page 809. [Photograph by N. P. Pavletich and C. O. Pabo]

Reports

825 Geometry, Topology, and Universality of Random Surfaces: J. R. Banavar, A. Maritan, A. Stella
827 Ultradeep (>300 Kilometers) Ultramafic Xenoliths: Petrological Evidence from the Transition Zone: V. Sautter, S. E. Haggerty, S. Field
830 In Situ Biodegradation: Microbiological Patterns in a Contaminated Aquifer: E. L. Madsen, J. L. Sinclair, W. C. Ghiors
833 Control of doublesex Alternative Splicing by transformer and transformer-2 in Drosophila: K. Hoshijima, K. Inoue, I. Higuchi, H. Sakamoto, Y. Shimura
836 Solution Structure of FKBP, a Rotamase Enzyme and Receptor for FK506 and Rapamycin: S. W. Michnick, M. K. Rosen, T. J. Wandless, M. Karplus, S. L. Schreiber
842 HBV X Protein Alters the DNA Binding Specificity of CREB and ATF-2 by Protein-Protein Interactions: H. F. Maguire, J. P. Hoeffler, A. Siddiqui
844 Inhibition of PDGF ß Receptor Signal Transduction by Coexpression of a Truncated Receptor: H. Ueno, H. Colbert, J. A. Escobedo, L. T. Williams
848 FTZ-F1, a Steroid Hormone Receptor-Like Protein Implicated in the Activation of fushi tarazu: G. Lavorgna, H. Ueda, J. Clos, C. Wu
851 Ca²⁺ Permeability of KA-AMP A-Gated Glutamate Receptor Channels Depends on Subunit Composition: M. Hollmann, M. Hartley, S. Heinemann
856 Identification of a Peptide Specific for Aplysia Sensory Neurons by PCR-Based Differential Screening: J.-F. Brunet, E. Shapiro, S. A. Foster, E. R. Kandel, Y. Ino

Technical Comment

860 Land Plants and Weathering: J. M. Robinson; R. A. Berner

Book Reviews

863 Physical Chemistry from Ostwald to Pauling, reviewed by R. Fiedel. Meteorology in America, 1800–1870, by B. Sinclair. Fundamentals of Molecular Evolution, by M. T. Clegg. Books Received

Products & Materials

LOOK TO NEN® RESEARCH PRODUCTS.
THE LEADER IN QUALITY, SAFETY AND CONVENIENCE.

The surest way to keep pace with complex life science research is to work with a partner who can help you meet the challenge. That partner is DuPont NEN Research Products.

When you needed safer, more convenient radiochemical packaging, we set a new standard with the NENSURE™ system.

We responded to environmental concerns by starting the first recycling program for plastic foam packaging and lead shielding for radioactive materials. Currently available in the U.S., this program will soon be extended to other countries.

To respond even faster to your inquiries, we can now deliver the most up-to-date product information by fax, 24 hours a day, 7 days a week.

Simply call DuPont FaxBack™ at 1-800-666-6527 (or 302-892-0616) and request document #900.

For innovative solutions to your research needs, look to DuPont for quality products and services.

Call us today for more information on our extensive line of NEN Research Products for life science research.
to determine the up/down regulation of cytokine receptors.

LABELED CYTOKINES
A New Research Tool

Many diverse stimuli can change the density of cytokine receptors expressed on a cell's surface and thus dramatically alter its responsiveness.

However, direct receptor analysis has proven difficult, and in mixed cell populations, impossible.

Now with R&D Systems' Fluorokine series of receptor analysis kits, a direct fluorescence measurement can easily be made. Moreover, when used in combination with an appropriate anti-CD or other cell surface marker, a differential analysis of cytokine receptors on subpopulations of cells can be achieved.

Each kit features a specific cytokine pre-conjugated to biotin or phycocerythrin, companion reagents including a necessary cell wash buffer and detailed instructions for use with a flow cytometer.

The reagents provided have been precisely formulated and quality controlled to ensure:

- optimal labeling of each cytokine to provide maximum fluorescence
- retention of the cytokine's biological activity
- specific binding to the desired receptor as demonstrated by complete inhibition of binding in the presence of:
 - excess unlabeled cytokine
 - neutralizing antibodies to the cytokine

APPEARANCE OF IL-4 RECEPTORS
Peripheral Blood Lymphocytes (PBLs) were activated with phytohemagglutinin and IL-2. The up-regulation of IL-4 receptors was monitored by flow cytometry as the increase in fluorescent intensity as a function of time.

FLUOROKINE kits available for:
IL-1α, IL-2, IL-3, IL-4, IL-6, IL-7, IL-8, TNF-α, G-CSF, GM-CSF, and TGF-β

To place an order or request product information, call us at 1-800-328-2400

Research use only. Not for diagnostic or therapeutic procedures.
Technology for America’s Future

Erosion of the competitive position of U.S. industry is well known to U.S. scientists and engineers. Until recently the federal government has paid little heed. Now there are signs that both the White House (see Science, 5 April, p. 20) and influential industrialists are devoting serious attention to the matter. A report issued by the Council on Competitiveness has been followed by a similar document from the Office of Science and Technology Policy. These provide information on our strengths and failures in the many areas of high technology. In what follows are comments based on the council’s report.*

In the era immediately following World War II, the United States had a virtual monopoly on new technology. This was fostered by spin-offs from defense R&D. The computer, the electronics components, the machine tool, and the aircraft industries were beneficiaries. Defense R&D gradually ceased to be a stimulus to the civilian economy. Global competition in high technology emerged. In both Japan and Germany the governments identified and fostered new targets for R&D. The pace of development in those countries accelerated. Recent comparative figures on the percentage of total government R&D budget devoted to various functions are as follows: for industrial development, U.S., 0.2; Japan, 4.8; Germany (figures for West Germany), 14.5; for defense, U.S., 65.6; Japan, 4.8; and Germany, 12.5; for health, U.S., 12.8; Japan, 2.6; Germany, 3.6; for energy, U.S., 3.9; Japan, 22.8; and Germany, 7.8.

These numbers show that the United States is not fostering industrial development directly while competitors are. The realities of today’s global markets militate against defense technology being useful in civilian markets. Defense industry is not geared to compete in commercial markets. The council’s report states:

Cost-plus contracts, quality control based on inspection rather than process improvement, highly specialized products, limited production runs and restricted markets are the dominant features of defense technology management. By contrast, flexibility, high quality at low cost, volume manufacturing expertise and access to many different markets are the primary concerns of managers in the private sector. . .

Today’s leading-edge technologies in microelectronics, computers and telecommunications are found, not in Defense Department laboratories, but in private industry. Moreover, consumer products are frequently driving state-of-the-art technology . . . Instead of industry adapting defense technology break-throughs to commercial markets, the Defense Department is increasingly adapting commercial technology to its needs.

Because foreign competitors have practically eliminated U.S. competition in some areas, the Defense Department finds itself dependent on foreign suppliers for many strategic technologies, including machine tools, electronic components, and integrated circuit fabrication equipment. For national security, to preserve our standard of living, and to create jobs, it is necessary to establish a national goal of fostering civilian high technology. The council’s report suggests that this might be accomplished if government, industry, and universities worked together. A key objective pointed to is generic technologies. These often underlie broad classes of products and can be worked on cooperatively ahead of the development of proprietary knowledge.

One of the most valuable features of the report is identification of 21 critical technologies. Critical technologies include electronic and photonics materials, process equipment, microelectronics, software, and computers. Under each of the 21 critical technologies are listed two to ten components and the status of the United States in each. For example, the United States is strong in various aspects of biotechnology and software. It is losing badly, or has lost position, in memory chips and robotics.

A substantial portion of the report is devoted to recommendations for actions by government, industry, and research universities. Perhaps the most important is a request for presidential leadership:

Presidential leadership is . . . essential to success. The President is uniquely positioned to set national priorities, communicate to them to the American public and directly involve key federal agencies in the effort to address them. Therefore, the full involvement and support of the White House is a key part of the effort to raise technology and competitiveness to a national priority.

—Philip H. Abelson

10 MAY 1991
VOLUME 252
NUMBER 5007
HOW TO ACHIEVE ENHANCED CHARACTERIZATION OF BIOMOLECULES.

The Electrospray System from Finnigan MAT simplifies tedious sequencing processes, and lets you produce accurate and intelligent data in a fraction of the time.

Picomole and femtomole sensitivity in molecular weight determination, coupled with structural elucidation achieved in hours—not days or weeks—makes the Electrospray System a powerful tool.

The Electrospray System combines electrospray ionization (ESI) with our high-performance TSQ™ 700 mass spectrometer to provide molecular weight determination of biomolecules, such as peptides and proteins with mass accuracy of 0.01%.

And the innovative Finnigan MAT data processing software extracts meaningful information and presents it in a format tailored for the biochemist, letting you spend more time on science and less time crunching numbers.

To seek higher intelligence in high mass analysis, call a Finnigan MAT office listed below or FAX (408) 433-4823.

A subsidiary of Thermo Instrument Systems, Inc.

California (408) 433-4800 • Georgia (404) 424-7880 • Ohio (513) 891-1255 • Illinois (708) 310-0140 • New Jersey (201) 740-9177 • Maryland (301) 698-9760

Germany 421-54931 • UK 442-233555 • France 1-6941-9800 • Italy 6-601-1742 • Netherlands 838-527266 • Sweden 08-680-0101

Circle No. 88 on Readers’ Service Card
Invitrogen Introduces a Fast, Simple, Non Radioactive Method For Quantification of Nucleic Acids with The DNA DIPSTICK.

It Quantitates Nucleic Acids at Concentrations as Low as one Nanogram per Microliter

Provides a Permanent Record of Results

Is More Consistent Than Conventional Techniques

Requires no Special Equipment for Fast Inexpensive Results

Ideal for Quantification of single or double stranded DNA, RNA or oligonucleotides

Now you can have fast, accurate nucleic acid measurements which are critical for PCR Amplification, Subcloning, DNA sequencing, and cDNA or Genomic DNA Library Construction.

Because time and accuracy are very important in today's rapidly changing world, Invitrogen is committed to providing DNA Technology that is as advanced as it is simple.

To order, ask for catalog #K5632-01.

1-619-597-6200
1-800-955-6288
Gilson Pipetman® P-10, the NEW world standard for 0.5 to 10μL liquid measurements.

With the new Micro-10™ tip, P-10 has the smallest total air volume of any manual air-displacement pipette—your guarantee of superior accuracy and precision at 0.5μL:

- mean error less than 5%
- standard deviation 2.8%

The piston extends to the end of the shaft—not beyond it—reducing risks of damage and cross-contamination.

The capillary end on the Micro-10 tip eliminates errors due to “residual cling,” allowing a sample droplet as small as 0.5μL to be released easily.

Just $245 gives you true ultramicro performance, a one-year warranty and toll-free telephone access to Rainin's Pipetman technical support group. To place your order, call 800-472-4646; in Massachusetts 617-935-3050.

RAININ
INSTRUMENT CO. INC.

Mack Road, Woburn, MA 01801 • 617-935-3050
1715 64th Street, Emeryville, CA 94608 • 415-654-9142

"Micro-10™" is a trademark of Rainin Instrument Company, Inc.
"Pipetman™" is a trademark of Gilson Medical Electronics.

Circle No. 71 on Readers’ Service Card
The Most Sophisticated System for Maximum Protein Expression...

Is Also the Simplest!

The MaxBac™ baculovirus expression kit is the most efficient means for generating large amounts of recombinant proteins (up to 500mg/L) from cloned genes. The recombinant proteins produced are antigenically and functionally similar to their natural counterparts.

The MaxBac™ expression system offers:

- High level recombinant protein expression.
- Simple visual or immunological identification of recombinants.
- Production of functionally active proteins from cloned genes.
- Unique glycosylation for comparison of proteins from other eukaryotic systems.

- Production of proteins which are better suited to crystallography studies.
- Proper transport and modification of recombinant proteins.
- A sophisticated alternative to prokaryotic and mammalian expression systems.

The MaxBac kit contains all of the materials needed to reliably generate recombinant proteins, including the recently developed BlueBac transfer vector. The BlueBac vector imparts a blue color to recombinants grown on indicator media, allowing fast, accurate differentiation and plaque purification. Find out why MaxBac, the most sophisticated system for protein expression, is also the simplest. To get more information on the MaxBac kit, custom baculovirus expression or individual MaxBac components call toll free:

1-800-955-6288

3985-B Sorrento Valley Blvd.,
San Diego, CA 92121
(619) 597-6200 Phone • (619) 597-6201 Fax

Circle No. 128 on Readers' Service Card
Take Good Care of Your Genes

Whether you are cutting DNA or modifying it, trust your precious samples only to pure enzymes from Pharmacia LKB. Find out for yourselves how good they are, by checking out our:

- Restriction enzymes
- FPLCpure® modifying enzymes

Our high-quality enzymes also ensure excellent performance from our:

- cDNA Synthesis Kits
- "T" Sequencing™ Kit

Pure Performance™ products from Pharmacia LKB Biotechnology . . . pioneers and leaders in protein purification.

Pharmacia
Advancing The New Biology
Introducing the Most Important Invention in PFGE Since the Invention of PFGE

Pulsed field electrophoresis (PFGE) is the most powerful method ever developed for genome and small DNA mapping. And the CHEF Mapper™ system is the ultimate PFGE tool. Its incredible PACE² architecture lets you simulate any PFGE technique. Or create any technique you want using 0-360° angles, multi-state vectors, asymmetric voltages, rapid switching, and other unique capabilities.

You don’t need to be a PFGE expert to get fast, high resolution separations. A built-in algorithm based on 5 man-years of PFGE expertise automatically selects optimum conditions for the fragments in your sample and gives you results at the push of a button. The interactive CHEF Mapper system also lets you program 11 key variables to suit your specific separations. The possibilities are unlimited.

1-800-4BIORAD
CALL TODAY OR FAX 1-800-950-4B10 FOR CHEF MAPPER BROCHURE.
There's always been a choice. But now the choice is obvious. Vent™ DNA Polymerase from New England Biolabs

Vent™DNA Polymerase allows experimental approaches you never thought possible... now cloned at New England Biolabs and available at 1/3 the previous cost.

For unsurpassed thermal stability, choose new recombinant Vent™ DNA Polymerase from New England Biolabs. Vent™ DNA Polymerase provides exceptional performance over a wide temperature range and enables primer extension of up to 13 kb in length.

Originally purified from the extreme thermophile Thermococcus litoralis which grows at temperatures up to 98°C in thermal vents on the ocean floor, Vent™ DNA Polymerase remains active for over two hours at 100°C.

Vent™ DNA Polymerase exhibits far superior fidelity due to its 3'-5' exonuclease function as shown by the loss of proofreading activity in an engineered exonuclease minus Vent™ (Vent™exo-).

Heat stability of various thermal stable DNA polymerases including recombinant and native forms of Vent™ DNA Polymerase. All were incubated at 100°C under standard assay conditions. AmpliTaq™ - product of Perkin-Elmer Cetus - Lot #0484. HOT TUB™ - product of Amersham Corp - Lot #0085. NEN Replinase™ - product of DuPont - Lot #WFP1810.

Reversion frequency reflects error rate for a single round of gap-filling DNA synthesis. Base substitution fidelity was measured by the opal codon reversion assay of Kunkel et al. (1987) Proc. Natl. Acad. Sci. USA 84, 4865-4869.

Choose new recombinant Vent™ DNA Polymerase because it is the only commercially available thermal stable DNA polymerase with a 3'-5' proofreading exonuclease function.

In base substitution studies, Vent™ outperforms Taq, resulting in a 6-fold greater fidelity of base incorporation. New England Biolabs Vent™ DNA Polymerase is cloned.
Who says techies don't
have power lunches?

No power suits or power ties.
You're just hungry for all the real power you can get.
Now you can get more than ever before.
Introducing Digital's DECstation™ 5000 workstation—the most powerful UNIX®-based RISC workstation we've ever offered.

COME AND GET IT. IT'S HOT.
Everything about the DECstation 5000 Model 200 workstation says speed, power and leadership performance.
For starters, it's driven by the MIPS R3000 CPU chip which supports 8-120 MB of memory—that's more than you get on any other desktop workstation.
Looking for spectacularly hot graphics? Take a good look at the DECstation 5000 Model 200 workstation.

You can choose from a wide array of upgradeable graphics options. From simple frame buffers to high-speed accelerators for visualization—just what you need for 2-D, 3-D, imaging and high-compute tasks. And if you want to run with even more power, we offer still more options. Like the incredibly fast FDDI fiber optic link. Or the industry's fastest open bus, the 100 MB/sec TURBOchannel™ introduced first on DECstation 5000 Model 200 workstation.

One more powerful incentive: it's very competitively priced.
If you get the idea the DECstation 5000 Model 200 workstation gives you the power you've only dreamed of right at your desk, you're getting the picture.

OPEN FOR BUSINESS.
Besides providing the power you want, the DECstation 5000 Model 200 workstation provides you with a host of other things you need. The most important of which is a truly open environment to operate in.

It comes with a choice of open, industry-standard buses: SCSI and VME. It supports key workstation standards for operating systems, graphics interfaces and network communications. And, of course, it's compatible with all other systems from Digital regardless of size or operating system. Just the things you'd expect from Digital, the leader in promoting standards for truly open computing.

Adherence to standards, plus speed and performance that's anything but standard. Digital's UNIX-based RISC DECstation 5000 Model 200 workstation.

For more information, call 1-800-343-4040 ext. 295.
We suggest you do it at lunch.

Digital has it now.
The easiest and fastest way to purify, desalt, and concentrate monoclonal antibodies is QUICKMAB.

- Purifies any class or sub-class of antibodies: IgG, IgM, IgA, IgE, etc.
- No centrifugation or filtration of cells
- Nondenaturing elution conditions
- No dialysis or concentration steps
- No bovine IgG contamination from culture media
- >98% pure, concentrated antibody in about an hour

Put the fastest most effective system for antibody purification to work for you, call –

1-(800)-535-2284 ext. MAB

TAHITI!

1991

Explore Tahiti on board S/V Wind Song,
September 27 – October 7. Enjoy Papeete
- Raiatea • Bora Bora • & Moorea!
$2,195 (plus air fare).

(800) 252-4910

Travels with AAAS by BETCHART

Amazon & Brazil!

1991

Explore the Amazon & Brazil
Led by a Brazilian wildlife biologist, see
Manaus • The Pantanal • Caratinga & Rio.
Look for anteaters, woolly spider monkeys, marmosets, anacondas, and more!
September 11 – 26 ($3,690 plus air fare)

(800) 252-4910

Travels with AAAS by BETCHART
PFANSTIEHL LABORATORIES, INC.
The source for carbohydrate chemistry
1219 Glen Rock Avenue/Waukegan, IL 60085-0439
Tel.: 1-708/623-0370/Toll Free: 1-800/383-0126
FAX: 708/623-9713/Telex 25-3672 Pfaniab
71-W

LOW ENDOTOXIN CARBOHYDRATES FOR THE LIFE SCIENCES
Many biotechnology and pharmaceutical processes require the use of carbohydrates which have very low endotoxin levels. Fermentations, tissue culture work and certain critical pharmaceutical processes are among those that require such sugars. Our in-house technology and production know-how have led to the development of extremely low endotoxin levels in sugars such as maltose, sucrose, D-galactose and others. If your process requires low endotoxin carbohydrates or related compounds, put our products to work.

PFANSTIEHL LABORATORIES, INC.
The source for carbohydrate chemistry
1219 Glen Rock Avenue/Waukegan, IL 60085-0439
Tel.: 1-708/623-0370/Toll Free: 1-800/383-0126
FAX: 708/623-9713/Telex 25-3672 Pfaniab
71-W

MAKING THINGS WORK

P.Fit
P.Fit has data transformation, equation solving and function evaluation. Many equations for non-linear fitting are already installed, including four-parameter sigmoid models, linear regression, Michaelis-Menten, 1st order kinetics, binding and competition, Hill equation, mono- and poly-exponential growth and decay. Also, nonlinear regression is possible. You can easily add your own equations. A statistical report on each fit is given with parameter values, SEs, goodness of fit index, residuals, covariance, correlation, Chi², sign-test and run-test.

The non-linear equation plotter for PC/PS2 can now calculate area of peaks
Now version 5.1E of P.Fit permits plotting of chromatography and similar data and there is a flexible facility for calculating AUC of individual peaks. Results may be sent as tables and/or graphs to HP LaserJet, dot-matrix printers or HPGL plotters. Files may also be sent to disk or exported to other programs in the form of CGM metafiles, PostScript, HPGL or PCL. Several plots can be displayed on the same graph. Fits can be used to find unknowns from a standard curve, so P.Fit can be used for assays.

$225

BIOSOFT
PO Box 10938, Ferguson, MO 63135
Tel: (314) 524-8029 Fax: (314) 524-8129

Circle No. 67 on Readers' Service Card

Fastest UV-Vis acquisition and best resolution!
The SLM-AMINCO 3000 UV-Vis is the most advanced spectrophotometer available. With a spectrophotometer, you can:

- Record all data on the readout
- Measure in 0.3 to 0.01 absorbance units
- Measure absorbance with less than 0.00001% error
- Obtain reliable, quantitative results
- Record spectra in less than 1 minute
- Choose from over 5000 preprogrammed methods
- Calculate all necessary results automatically
- Print data, graphs, and spectra

Our exclusive GrantCare program can even help you find funding for your next instrument purchase. Call us today to arrange for a demonstration of the 3000 Array.

SLM-AMINCO
810 W. Anthony Drive, Urbana, IL 61801

Circle No. 146 on Readers' Service Card

Circle No. 112 on Readers' Service Card
BioCoat™ Cultureware

Adds a New Dimension to your cell cultures...

With BioCoat, In Vitro cell cultures look like this...

...instead of like this

BioCoat, the unique, ECM-coated cultureware from Collaborative, can significantly broaden the scope of your In Vitro cell studies. With BioCoat:

- Cells attach and grow more efficiently
- Cells polarize readily into apical and basolateral regions
- Cells differentiate and exhibit true physiologic function

A variety of extracellular matrix proteins (Matrigel™, Laminin, Fibronectin and Collagens), pre-coated on tissue culture plates, membrane inserts and coverslips, offer the researcher a convenient, reliable, ready-to-use means of accurately simulating In Vivo cell environments. Correlation and reproducibility of results are enhanced by the consistency and uniformity of the coatings, which are applied by a specially-developed, proprietary process.

Collaborative’s BioCoat can add new dimensions to your work in:

- Cell Differentiation
- Cell-Matrix Interaction
- In Vitro Toxicology
- In Vitro Carcinogenesis
- Primary Cell Culture
- Neural Cell Culture
- Tumor Invasion
- Polarization Studies
- Gene Expression

Exclusively from Collaborative Research Incorporated.
Your Source of Innovative Cell Culture Products.

Write or call today for complete information on Collaborative Research BioCoat Cultureware.

Biomedical Products Division

Collaborative Research Incorporated

Circle No. 52 on Readers’ Service Card

2 Oak Park, Bedford, MA 01730 • (617) 275-0004 • (800) 343-2035
1992
AAAS Scientific Freedom and Responsibility Award
To Encourage Scientists and Engineers to Reflect Upon the Social Implications of their Professional Actions

The AAAS Scientific Freedom and Responsibility Award, established by the AAAS Board of Directors in 1980, is awarded annually to scientists and engineers who have:

- acted to protect the public’s health, safety, or welfare; or
- focused public attention on important potential impacts of science and technology on their responsible participation in public policy debates; or
- established important new precedents in carrying out the social responsibilities or in defending the professional freedoms of scientists and engineers.

You are invited to submit nominations now for the 1992 award, to be presented at the 1992 AAAS Annual Meeting in Chicago, IL. A recipient of the award is selected by a panel of six judges. The deadline for receipt of entries is 15 July 1991.

Requests for nomination forms and more information should be sent to: Scientific Freedom and Responsibility Award, Directorate for Science and Policy Programs, Directorate for Science and Policy Programs, AAAS, 1333 H Street, NW, Washington, DC 20005.
Currently, it is not known if this species is formed by the bacterium or during the purification process. See P. Raphals, Science 249, 619 (1990); A. N. Mayano et al., ibid. 280, 1707 (1990); Center for Disease Control, Morb. Mortal. Wkly. Rep. 39, 589 (1990); ibid., p. 789.

49. We thank J. Leary for measuring the exact [M+H+] mass of the bis(tripeptidyl) cofactor. J. Sanders-Loehr for prepublication copies of their manuscripts, and L. Chen, V. L. Davidson, H. Duine, W. Hol, F. S. Mathews, E. G. Huizinga, and F. M. D. Villieux for their input and cooperation in the preparation of this manuscript. We also thank J. P. Klinman, C. Hartmann, and D. M. Dooley for support, discussions, and suggestions throughout the research.

Accepted applicants will have the opportunity to present their research to AAAS members in a one-on-one poster session at the Annual Meeting, and their abstracts will be published in the Annual Meeting Program.

In addition, a panel of distinguished scientists will evaluate the poster presentations. The students with the best presentations in their fields will receive cash awards and be recognized during the AAAS awards ceremony at the Annual Meeting.

For complete instructions on how to submit abstracts, watch for the “Call for Papers” in the 6 September 1991 issue of Science, or write: AAAS Meetings, Dept. SM, 1333 H Street, NW, Washington, DC 20005. (Deadline for abstracts is 1 November 1991.)
Announcing...

Human Genome III
The International Conference on the Human Genome

October 21–23, 1991
Town & Country Hotel
San Diego, CA

Co-chaired by

Walter Bodmer, Ph.D.
Director of Research
Imperial Cancer Research Fund

Charles R. Cantor, Ph.D.
Principal Scientist
DOE Human Genome Project

Sponsored by

Science Magazine
Published by the
American Association for the Advancement of Science
and

The Human Genome Organisation (HUGO)

Organized and Managed by

Scherago Associates, Inc.
A Professional Conference Organizer
1515 Broadway, Suite 1010
New York, NY 10036
Phone (212) 730-1050; Fax (212) 382-1921

Circle No. 124 on Readers’ Service Card
DNA by Operon.
Right Price. Right Now.

Now the world's leading supplier of synthetic DNA is also the price leader. Operon's custom DNA is now $3.60 per base with a $20.00 set-up fee per sequence, and free domestic delivery. Same outstanding customer service. Same high product quality. New low price. Call for your free researcher kit.

1-800-688-2248

DISCOVER! Travels with AAAS
For the Inquisitive Traveler

NEW in 1991!
- Ancient Anasazi & the Southwest, Aug. 31-Sept. 9. Explore Chaco Canyon, Santa Fe, Mesa Verde, Hopi & Navajo lands.
- Thailand & Hong Kong, Nov. 8-24. Bangkok & Chiang Mai cultural treasures, Surin elephant roundup, Khao Yai & Phi Phi Island.
- Alaska, June 27-July 9. Glacier Bay, Nome, Mt. McKinley, & more!
- Galapagos Islands & Ecuador, July 8-19, with Peru Extension to July 25. Darwin's enchanted isles & Machu Picchu.
- Amazon & Brazil: Wildlife, Sept. 11-26. From golden lion tamarins to the rainforest of Amazonia, Manaus, Brasilia, the Pantanal, Emas, and Rio.
- Voyage to the Sea of Cortez, Dec. 21-28. For your Christmas holiday!

And Coming in 1992:
- Antarctica, Jan. 6-20, 1992. Explore the "Great White Continent" aboard M/V Discoverer. See penguins, seals, seabirds, scientific research stations, and the vast spectacle of Antarctica!
- Costa Rica, March 10-22, 1992
- Belize & Guatemala, April 1-11, 1992

Call Today for Travel in 1991/92!
(800) 252-4910

For Members & Friends of AAAS by Betchart Expeditions INC. • 21601 Stevens Creek Blvd. • Cupertino, CA 95014 • (800) 252-4910
Chemistry Regenerated

Servos's aim is hinted in this book's title, for "the making of a science in America" begins with the reform program of Europeans Wilhelm Ostwald, Jacobus van't Hoff, and Svante Arrhenius. These chemists attempted to shift the focus of their field from substances to processes. Instead of asking simply what the products of a reaction would be, the new chemistry asked how much, how fast, and under what conditions these products appeared. In addressing such questions, new tools and new conceptual approaches were applied. Perhaps the most important of these was thermodynamics, with its mathematical techniques and its emphasis on the conditions for change and equilibria. With the new tools, however, came not only new powers, but also new demands. Mathematical sophistication, measuring minute changes in physical properties, discoursing in such abstractions as affinity, dissociation, and free energy, made traditional chemists acutely uncomfortable, to say the least. It is not surprising, therefore, that the new physical chemistry appealed most to a new generation.

That this new generation of chemists should flourish in the ambitious, rapidly expanding universities of the United States is also not surprising, but Servos makes clear that the particular experiences—and great success—of physical chemistry in America were not simply the product of environment but of individuals. The heart of his narrative is a rich and compelling description of the intellectual and institutional experiences of the men who brought the new discipline to America and who built the laboratories and departments, raised the funds, edited the journals, and taught the students that constituted a science's flesh and bone. G. N. Lewis, Wilder D. Bancroft, and, above all, Arthur A. Noyes put their stamp on physical chemistry in very different ways. In sensitively describing these differences, Servos gives us a tale that neatly balances the resolution of intellectual problems, the dynamics of institution-building, and the influence of personalities. The success of this balancing act is perhaps the greatest achievement of this work, and Servos's most important contribution to his field's own "reform."

At the center of all this is Noyes, whose extraordinary achievement was to build not one but two great programs in the new chemistry, first at M.I.T. from the 1890s until World War I, and then at Caltech in the 1920s and early '30s. The epitome of the successful academic entrepreneur, Noyes was driven by a dogged faith in the importance and ultimate success of making a new field at the boundary between physics and chemistry. His own contributions to theory and technique were modest, but he was able to gather around him students and co-workers who collectively were to provide the theoretical heart of physical chemistry. At M.I.T., G. N. Lewis established the groundwork for modern theories of the chemical bond, contributions that continued when Lewis left for Berkeley in 1912. At Caltech, "Noyes's greatest discovery" was Linus Pauling, whose work in bringing the new physics of quantum and wave mechanics to bear on chemistry was to mark a kind of culmination of the reform advocated by Ostwald and company.

A dramatic counterpoint to this theme of fulfilled ambitions and expanding horizons is provided by the story of Cornell's Wilder Bancroft. The founder and for more than 35 years editor of the Journal of Physical Chemistry, Bancroft played a quixotic role in the field's development. His journal provided a useful and important outlet for the new chemistry and helped to proclaim widely the important American role in the field. But Bancroft's vision of physical chemistry was never the same as that of Noyes and others. His devotion to applications of the phase rule is used by Servos as a symbol of Bancroft's limitations and intellectual perversity. As useful as the phase rule might be in certain situations (particularly in applied chemistry and metallurgy), it was quickly relegated by most physical chemists to the status of an occasionally useful rule of thumb, not, as Bancroft would have it, an important point of departure for chemical theory. Bancroft persisted in his unorthodox views, however, even late in his career, when he becameentranced by the importance of colloids. Servos gives a dramatic and poignant picture of the results of this iconoclasm, culminating in Bancroft's loss of his journal in 1932. Servos does not belabor the point, but his account of Bancroft, placed in such conspicuous contrast to the triumphs of Noyes, Lewis, and Pauling, is a kind of parable, meant to illustrate the fact that
numbers of gene substitutions and calculating genetic distances from gene sequence data are derived from population-genetic arguments. The molecular clock hypothesis, based on a population-genetic theorem, post-its that neutral gene substitutions should occur at a rate equal to the mutation rate, which may be a linear function of time. This result provides a basis for the estimation of divergence times among major lineages in the absence of an adequate fossil record. Moreover, times of duplication of major gene functions (for instance, divergence times of members of the globin gene superfamily) can be estimated from sequence data.

The fifth chapter of the book develops the estimation of organismic relationships from molecular data. If genetic distance increases as a monotonic function of time then it should be possible to estimate the pattern (topology) of relationships from gene-sequence data (molecular phylogenies). This application of molecular data has given rise to a number of computational algorithms that can seem complicated and confusing to the novice. While molecular phylogenetics has reinvigorated the study of systematics in recent years, it has also yielded several contentious ways of thought on computational methodology. Molecular phylogenies are also providing an independent basis for the analysis of morphological evolution and for testing major issues like the hypothesis that mitochondria and chloroplasts had an endosymbiotic origin.

The remaining chapters deal with what might be called molecular phenomenology. For example, during the past quarter-century we have learned that eukaryotic genomes contain vast numbers of repeated DNA sequences whose functions are obscure; introns were discovered, as were overlapping genes; the molecular structure of transposable elements was documented; and these genetic entities were found to be ubiquitous in nature. In addition, retroviruses and their associated retrotransposons were described and their occasional horizontal transfer among species was documented. This wealth of empirical information has produced a kind of natural history of the genome. As with classical natural history, the natural history of the genome must be accounted for within a unified theoretical framework. The theory of evolution provides that framework. It is a testament to the power of evolutionary theory that it can easily accommodate observations that were not imagined a quarter of a century ago.

MICHAEL T. CLEG
Department of Botany and Plant Sciences
University of California
Riverside, CA 92521

Reprints of Books Previously Reviewed

Books Received

Biological Actions of Extracellular ATP. George B. Dubyak and Jeffrey S. Fedan. Eds. New York Acad-