This Week in Science

Improved Yields of Biomass

Toujours Gaia: J. E. LOVELOCK; J. COYNE Learning from the Acid Rain Program: R. G. FLEAGLE; T. F. MALONE; C. BERNABO; P. M. IRVING; T. E. BARNARD Where Zagreb Is: A. LJUBIT%C3%BC AND B. A. LOGAN Sununu Diplomacy?: S. MAC LANE

End of Cold Fusion Institute; squabble over overheads at CERN; etc.

Bell Labs: Shakeout Follows Breakup

Starving Science to Feed Space Station Aging Research: A Growth Industry

Sexism Charged by Stanford Physician Mental Health Agency May Rejoin NIH

Moving Mountains for French Research An Academic Building Boom

Mid-Course Correction at LBL Genome Center


The Cell Cycle: Spinning Farther Afield How the Retinoblastoma Gene May Inhibit Cell Growth

Once-marooned Spacecraft Gets an Earthly Physical

Astrophysics Goes South

Cows and Climate; Sundry Catastrophes: The Buildup of a Greenhouse Gas Slows Did a Volcano Help Kill Off the Dinosaurs? A Fruitless Search for Great Midwest Quakes

Splicosomes and Snurposomes: J. G. GALL


The Physics of Organic Superconductors: D. JÉRÔME

Molecular Biology of Prion Diseases: S. B. PRUSINER

Interaction of the IL-2 Receptor with the src-Family Kinase p56Lck Identification of Novel Intermolecular Association: M. HATAKEYAMA, T. KONO, N. KOBAYASHI, A. KAWAHARA, S. D. LEVIN, R. M. PERLMUTTER, T. TANIGUCHI
Primary sensory areas of rat neocortex, revealed by computer-enhanced acetylcholinesterase histochemistry. Somatosensory cortex (center) is organized into discrete “barrels,” functional units of thalamic axons and cortical neurons, arranged in a pattern isomorphic to specialized sensory hairs on the rat’s skin. Visual cortex (lower right), which normally has a more uniform pattern, develops barrels when transplanted to somatosensory cortex, indicating that these diverse cortical areas have the potential to form similar structures. See page 1556. [Photograph by B. L. Schlaggar, D. D. M. O’Leary, and J. Plotkin]