This Week in Science

Excessive Fear of PCBs
HIV Research and nef Alleles: W. A. Haseltine; J. A. Levy
L. B. Helmsman: C. V. Shank

Ground-breaking on research ice-breaker; poking holes in EMF studies; etc.

Seeing Stars in a Handful of Dust
Scooping Starstuff From a Comet
New 3-D Protein Structures Revealed: The Shape of Cholera
First Protein Kinase Structure
Mix Well, Then Apply: Math Meeting in D.C.: Goodbye Assembly Line
Curse Foiled—Again
Microbial Math
A Most Improbable Planet
A Mountaintop Cliffhanger of an Eclipse
The Small Wonders of Microengineering

Statistical Data Analysis in the Computer Age: B. Efron and R. Tibshirani
Enols and Other Reactive Species: Y. Chang and A. J. Kesge
Protein Tyrosine Phosphatases: A Diverse Family of Intracellular and Transmembrane Enzymes: E. H. Fischer, H. Charbonneau, N. K. Tonks

Reports

421 High-Pressure Chemistry of Hydrogen in Metals: In Situ Study of Iron Hydride: J. V. Badding, R. J. Hemley, H. K. Mao

424 Commensurability and Mobility in Two-Dimensional Molecular Patterns on Graphite: J. P. Rabe and S. Buechholz

427 Dislocations and Flux Pinning in YBa2Cu3O7−δ: S. Jin, G. W. Kammlott, S. Nakahara, T. H. Tiefel, J. E. Graebner

429 Order and Disorder in C60 and K2C60 Multilayers: Direct Imaging with Scanning Tunneling Microscopy: Y. Z. Li, M. Chander, J. C. Patrin, J. H. Weaver, L. P. Chibante, R. E. Smalley

435 Conversion of Ectoderm to Mesoderm by Cytoplasmic Extrusion in Leech Embryos: B. H. Nelson and D. A. Weisblat

442 Recognition of a Cell-Surface Oligosaccharide of Pathogenic Salmonella by an Antibody Fab Fragment: M. Cygler, D. R. Rose, D. R. Bundle

445 Solution Structure of Kistrin, a Potent Platelet Aggregation Inhibitor and GP IIb-IIIa Antagonist: M. Adler, R. A. Lazarus, M. S. Dennis, G. Wagner

Technical Comment

452 The Spectrum of Comet Austin: T. G. Slanger; J. Green, W. Cash, T. Cook, S. A. Stern

Inside AAAS

454 Scientists Invited to Join Teachers in Fight Against Scientific Illiteracy ■ 1991 Bell Atlantic—AAAS Institute Teachers ■ AAAS Fellows Learn EPA Ways ■ In Memory of Arthur Herschman ■ Reviewers Wanted ■ Call for SLAAS Delegate

Book Reviews

457 The Unfolding of a Philosophy, reviewed by A. E. Shapiro ■ A Cultural Transplant, B. Molony ■ Approaches to Systematics, J. G. Lundberg and L. A. McDade ■ Beneath the Continents, P. G. Silver

Products & Materials

465 DNA Probes ■ Software for Numerical Taxonomy ■ Gel Blotting Papers ■ Small Soakable Video Camera ■ Hand-Held Computer System ■ Enzyme Cleaner for Fermentation Residues ■ Literature

Cover Ribbon diagram of the conserved catalytic core shared by all known eukaryotic protein kinases. The crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase provided the template for the core. The amino terminus of the protein (shades of brown) is associated with magnesium adenosine triphosphate binding, and the carboxyl terminus (purple) with peptide binding. Catalysis occurs in the cleft between the two lobes. Insertions at the sites indicated by dots (blue-green, more than 70 residues; violet, more than 25 residues) occur in some members of the protein kinase family. See pages 407 and 414. [Source: S. S. Taylor; illustration by Diana DeFrancesco]
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/253/5018

Permissions Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl