cDNA Libraries in a Single Day

TimeSaver™ cDNA Synthesis Kit

Start in the morning with mRNA, and plate out your cDNA library by the end of the day. It's all in a day's work with TimeSaver™ cDNA Synthesis Kit from Pharmacia P-L Biochemicals.

Why wait? If you'd like to make cDNA libraries in a single day, call your local Pharmacia representative, and refer to:

TimeSaver™ cDNA Synthesis Kit 27-9262-01
QuickPrep™ mRNA Purification Kit 27-9254-01

In the US, order toll-free from Pharmacia LKB:
(800) 526-3593.

Miniprep analysis of HeLa cell cDNAs made with TimeSaver™ cDNA Synthesis Kit and cloned into pT713 18U. M = markers, V = vector alone.

Head office Sweden Tel 46 (08) 16 30 00. Australia Tel (02) 888 36 22. Austria Tel (0222) 66 66 250. Belgium Tel (02) 727 43 51. Brazil Tel (11) 288 9122. Canada Tel (514) 457 6661. Denmark Tel (045) 48 14 1000. Finland Tel (0) 502 1077. France Tel (01) 30 84 34 00. Germany Tel (0761) 490 30. Great Britain Tel (0044) 66 11 01. Greece Tel (01) 724 54 50. Hong Kong Tel 852* 814 8421. Holland Tel (034) 80 779 11. India Tel (0812) 267 630. Italy Tel (02) 27 32 21. Japan Tel (03) 3492 9497. Korea Tel (02) 511 0851. Norway Tel (02) 18 10 00. People's Republic of China Tel (1) 256 3388. Portugal (01) 471 24 72. Spain Tel (003) 582 1717. Sweden Tel (08) 823 8500. Switzerland Tel (01) 821 18 16. Taiwan Tel (02) 831 6022. United States Tel (908) 457 8500. East Europe Tel 43° (0222) 982 38 26.

Circle No. 114 on Readers' Service Card
If chemical substances are the building blocks of life, then STN International® should be your foundation when you begin a new project. On STN, you’ll access the databases of the American Chemical Society, Royal Society of Chemistry, the Beilstein Institute, and other authoritative organizations.

Everything about STN has been created to assist you in obtaining information efficiently and economically. On STN, you’ll find special features that enhance your searching, whether you’re a novice or an expert.

One Command Language
Using a few straightforward commands, you’ll be able to obtain information in more than 110 databases on STN. STN’s software, Messenger®, enables you to carry a search created in one database over to another on STN for further information. This is an especially valuable capability when used with CAS Registry Numbers®

Protein Sequence Searching
You’ll have instant access to protein and peptide information on STN. It’s the fast, easy, and predictable way to obtain sequences with uncommon residues, genetically modified sequences, and sequences from patents.

Structure Searching
On STN, you can search chemical structures and substructures to identify substances in the CAS REGISTRY file, with more than 10 million substances recorded. Since so many STN chemistry databases contain CAS Registry Numbers, you can easily transfer a substance from one file to another for more complete information.

Numeric Searching
You’ll find consistency in property names and substance identification, CAS Registry Numbers, a units conversion feature, and range searching available in STN numeric databases. Software packages to calculate additional precise data values are also available online for some STN databases.

As an STN customer, you receive help from workshops, tutorial diskettes, STN Express® software, a toll-free Help Desk, newsletters, and online help messages.

Research your next project online with STN — complete and return the coupon below.

YES! Please tell me how to become a user of STN International.

Name ____________________________

Title ____________________________

Organization ____________________________

Address ____________________________

City, State ZIP ____________________________

Phone ____________________________

MAIL TO: STN International,
c/o CAS, Marketing Dept.
30191, P.O. Box 3012,
Columbus, OH 43210
FAX TO: 1-614-447-3713
Letters

Editorial

1277 Room at the Bottom: J. I. Brauman

ScienceScope

1283 Digesting critical technologies; sowing seeds of a rice biotech network; etc.

News & Comment

1284 Jason: Can a Cold Warrior Find Work? ■ Vietnam: An Awkward Time to Be a Jason
1287 Advisory Committee Urges Changes at OSI
1288 Seeing Big Things in Miniaturation
1289 Europe’s Space Plans on Hold
1290 Briefings: Anti-Panic Campaign ■ Keeping Tabs on a Big Berg ■ Polio Vaccine Ruling ■ Beating Those Vibration Blues ■ Genes at the Zoo ■ Machines Who Think ■ Online Journals ■ Engineering First

Research News

1292 Hot Prospect for New Gene Amplifier ■ How LCR Works ■ A Scramble for Patent Rights
1294 Superlight (in Theory, Anyway) ■ A Galaxy Is Born
1295 The Fogy Crystal Ball of Mineral Physics
1296 Is Nitric Oxide the “Retrograde Messenger”? ■ Physicists Close in on a Weighty Quarry ■ Cosmologists: “The Neutrino From Hell”

Special Section

Engineering a Small World: From Atomic Manipulation to Microfabrication

News Reports

1300 The Man Who Dared to Think Small
1302 A U.S. Lab Opens Doors To the Nanoworld ■ Step by Step to a Nanodevice
1304 Japan Starts a Big Push Toward the Small Scale
1306 Materials Scientists Put The Squeeze on Electrons
1308 Exploiting the Nanotechnology of Life
1310 The Apostle of Nanotechnology

Articles

1319 Atomic and Molecular Manipulation with the Scanning Tunneling Microscope: J. A. Stroscio and D. M. Eigler
1326 New Quantum Structures: M. Sundaram, S. A. Chalmers, P. F. Hopkins, A. C. Gossard
1335 Microfabrication Techniques for Integrated Sensors and Microsystems: K. D. Wise and K. Najafi
COVER Cross section of a serpentine superlattice (100 angstrom period) and its three lowest energy electron wave functions as an example of fabrication on a small scale (see page 1326). The cross-sectional view (far right) shows the aluminum-rich regions (dark) that confine electrons to the gallium-rich regions (light) in the segregated aluminum-gallium-arsenic alloy. The most colorful portions of the wave functions (in sections to the left) are regions of maximum electron density; the reddish-brown areas indicate zero density. See the editorial on page 1277 and the special section beginning on page 1300. [Simulations by J. C. Yi of the University of California, Santa Barbara]
Develop new customers!
Demonstrate products!
Attract new members!
Publicize successes!
Recruit personnel!
Increase name recognition!

You can do it all before an international scientific audience and press corps when you exhibit at AAAS*92, the 158th national meeting of the American Association for the Advancement of Science (6-11 February, at the Hyatt Regency Chicago).

AAAS*92 is the one meeting that attracts 5,000+ scientists, researchers, and educators from virtually every field of science.

Join scores of exhibiting organizations that include:
- Publishers of science books/journals,
- Software & computer companies,
- Scientific societies and associations,
- Government agencies,
- Scientific information services,
- Scientific equipment manufacturers,
- Corporations with scientific interests.

Sign up now!

For more information, call Stacy Weinberg at 202-326-6462, or write to the AAAS Meeting Promotion Department, 1333 H Street, NW, Washington, DC 20005.

American Association for the Advancement of Science

WHAT DO YOU REALLY THINK ABOUT FETAL RESEARCH, FRAUD IN SCIENCE, HEALTHCARE ISSUES, YOUR JOB...?

AAAS is conducting the first Member Opinion Poll designed to find out what you think about current issues which have an impact on the Science and Technology community in general, or you directly.

Survey materials have been mailed to randomly selected members. If you receive this 2-page questionnaire, we urge you to complete the survey and return it to us by December 20! If you don't receive a questionnaire, please keep an eye out for the next Member Poll—your name may be selected in the future.

The topic for this first survey is intriguing, important, timely and to be revealed, with survey results, in February 1992.

This is your chance to voice your opinion.

If you have questions or topics to suggest for future Member Opinion Polls, please call Kathleen Markey, Member Research Manager at (703) 448-7862.
Room at the Bottom

Scales and magnitudes are part of the stuff that scientists love. Cosmology and megascopes on the one hand, and atoms (or subatomic particles) and microscopes on the other, give us a sense of how grand nature is and how consistent our physical pictures are.

In 1959 Richard Feynman gave a lecture, later reprinted, entitled “There’s Plenty of Room at the Bottom” (see Research News, p. 1300). In his usual prescient way, Feynman suggested a variety of experiments and technologies that might be achieved at very small scales. This is an area that is currently getting a lot of hype. Some recent suggestions sound like science fiction, although we are not yet seeing articles titled “Honey, I Shrank the Factory.” Nevertheless, terrific advances have been and are being made. In this issue, we explore some progress in manipulating matter on very small scales. The technology and science range from manipulating individual atoms to manufacturing macrostructures such as sensors.

Whitesides et al. deal with the problem of molecular self-assembly and nanotechnology. “Nanostuctures” have dimensions of about 10 to 1000 angstroms, a size that is small by engineering standards, common by biological standards, and large to chemists. Many biological structures are formed by molecular self-assembly. The spontaneous aggregation of molecules using noncovalent bonds to form a well-defined structure is a critical component of biological systems. Self-assembly is discussed as a strategy in chemical synthesis with the potential of generating nonbiological structures of this size.

Stroscio and Eigler discuss atomic and molecular manipulation with the scanning tunneling microscope. Until recently, we depended on the collective behavior of molecular systems to understand their structure. Diffraction and absorption experiments reveal much about molecular structure by simultaneous study of a large number of similar or identical molecules. Now, scanning tunneling microscopy allows us to look at individual atoms and has become a critical tool for exploring structure at the atomic level. One of the most recent exciting developments in this field is the ability to move single atoms, place them at selected positions, and build structures atom by atom.

Sundaram, Chalmers, Hopkins, and Gossard describe new advances in quantum devices. In particular, quantum wires and quantum wells, in which electrons are confined to potential wells in one and two dimensions, will lead to new electrical and optical properties. Using epitaxial deposition, one can readily make two-dimensional artificially quantized structures. By means of atomic steps on single-crystal surfaces it is possible to make very small (less than 100 angstrom diameter) wires. Electrons can also be released and controlled in the third dimension. For example, a parabolic potential can be realized by synthesizing a graded Al_xGa_1-xAs alloy with a parabolic mole-fraction profile. This article and a related Research News article by Graft (p. 1306) discuss important and interesting progress in this area.

Finally, Wise and Najafi describe microfabrication techniques for integrated sensors and microsystems. This technology provides the interface between very large scale integrated circuits and non-electronic monitoring and control. Using photolithography to provide a mask, followed by etching, one can produce various kinds of sensors, most recently flowmeters and accelerometers. Owing to high-volume production, the costs of these sensors and actuators can be exceedingly low, and they are already beginning to revolutionize much of the complex control machinery that we deal with every day. Biomedicine and automated manufacturing are areas in which these devices will be especially important.

Much of what we see here was foretold by Feynman, although the techniques that are actually in use today were not apparent at the time of his lecture. It is clear that he would have been gratified by the progress that has been made and the promise of more to come. There is, indeed, room at the bottom, and we are beginning to move in.

—JOHN I. BRAUMAN
new product!

Operon Technologies now has 500 different 10-base oligonucleotide primers in stock, for use in the new genetic mapping method developed by Williams et al. (Nucleic Acids Res., 18 6531-6535). In this method, single 10-base primers are used to amplify DNA polymorphisms, which are useful as genetic markers. This method has considerable advantages over RFLP methods. Operon's primers are available for immediate shipment at $150 per kit of 20 sequences, with no charge for domestic delivery. Please call or fax for details.

1-800-688-2248

Operon Technologies, Inc.
1000 Atlantic Ave., Suite 108 - Alameda CA 94501
Tel. (510) 865-8644 Fax. (510) 865-5255 - NIH/PA 203-0003233

WORLD’S LEADING SUPPLIER OF SYNTHETIC DNA.

GENOME MAPS 1991

Send in your order for a reprint of the Genome Maps 1991, featured in the 11 October issue of Science Magazine. This colorful 21” x 32” foldout wall chart has two key features. In one section it highlights progress in the Human Genome Project—localization of genes and markers on the chromosomes as well as sequencing effects. In addition, because of the importance of model systems in biology and medicine, the chart summarizes mapping and sequencing achievements in one of the classic model systems, Drosophila melanogaster.

Order a copy of the Map for your friends, and family by completing the coupon. Please make checks payable to Science (US funds only).

Total number ordered @ $8.00
$ Subtotal
$ For shipment to California, add applicable sales tax.

Postage & Handling:
In the US $1.50
International Air $5.00
International Surface $2.00
Method OF PAYMENT
Visa MasterCard
Check enclosed
Card #: Exp: Ordered By:
NAME:
ADDRESS:
CITY: STATE: ZIP:

Send Orders to: Corrine Harris
1333 H St., N.W.,
Washington, D.C. 20005
202 326-6527 (phone); 202 682-0816 (fax)

unwanted senescence was causing me to see double, that some antisense RNA had mucked up my optic nerves. When a second look detected no second Science, my worry was replaced with the thought that antisense RNA cloning was being practiced on these homozygous fruits. Have the National Institutes of Health approved this practice? Could Congressman Dingell’s staffers be investigating at this very moment? Perhaps the congressional subcommittee that funds the National Endowment for the Arts can come up with a reason to investigate. Or maybe the General Accounting Office will be asked to determine whether agency libraries that subscribe to Science have been shortchanged six tomatoes.

Al Duba
341 Lincoln Avenue,
Livermore, CA 94550

Reply: The image provided by the authors was of six tomatoes. Our art department duplicated the image for the cover of Science for the sake of design. This shows that we will publish only results that can be duplicated.—Eds.

Jellyfish Aloft

In his article “Space may be bad for your health” (Research News, 27 Sept., p. 1491), Eliot Marshall states that the “2000 jellyfish lofted into space aboard the space shuttle in June swam around placidly, much as they do on Earth.” Many of the 2478 jellyfish swarm, but not as they do on Earth. The tiny jellyfish (ephyrae) are immune neither to microgravity in space nor to gravity on Earth when they swim. Indeed, on Earth, they tend to sink when they stop swimming. Therefore, Marshall’s reference to NASA’s budget being as “immune to gravity” as the “lofted” jellyfish is inappropriate.

Dorothy Spangenberg
Eastern Virginia Medical School,
Norfolk, VA 23501-1980

Ynes Mexia’s Legacy

Ynes Mexia was indeed a remarkable woman (Book Reviews, 23 Aug., p. 917), even more remarkable if any of her plant collections “went to Asa Gray,” since Gray had been dead for 33 years when Mexia began her botanical activities in 1921.

Robert Ornduff
Department of Integrative Biology,
University of California,
Berkeley, CA 94720

Science, Vol. 254
Which RNA Sample Contains The Highest Percentage Of PolyA+?

mCheck™ Can Tell You Before It’s Too Late.

The mCheck™ kit is the only system that determines the percentage of PolyA+ RNA in an RNA sample. Intact PolyA+ RNA is required for reactions such as cDNA synthesis, micro-injection, RNase protection studies and in-vitro translation. Relying on O.D. readings and gels to check RNA preparations can result in wasted time, money and sample since these methods cannot determine PolyA+ percentage.

- mCheck accurately determines PolyA+ percentage before time consuming and expensive reactions are started.
- mCheck is a simple, reproducible assay that is essential for applications where intact mRNA is required.
- mCheck can differentiate between intact mRNA, ribosomal RNA, DNA and degraded message.

The mCheck™ kit employs a novel technique to determine PolyA+ percentage and should be used to test all RNA preparations. To determine the quality of your mRNA samples before it’s too late, rely on the mCheck kit.

Figure 1: mCheck Procedure

In the presence of cordycepin triphosphate, PolyA polymerase adds 1–2 radiolabelled ATP’s to 3’ ends of all molecules. Oligo dT binds to RNA with true PolyA+ tails and RNase H cleaves the resulting hybrids. TCA precipitable counts are proportional to polyA+ RNA in the sample.

1-800-955-6288
619-597-6200 • FAX: 619-597-6201

Invitrogen

3985-B Sorrento Valley Blvd., San Diego, CA 92121

Circle No. 127 on Readers' Service Card
SATURDAY, 8 FEBRUARY

Information Processing in the Nervous System: Molecular Basis (8:30am–11:30am)
Experience, Impulse Activity, and Gene Expression, Ira Black, Robert Wood Johnson Medical School
+ Signal Transduction in the Nucleus of Neurons: Role of Inducible Proto-Oncopeptide Transcription Factors, Thomas Curran, Roche Institute
+ Signal Transduction in the Brain: Role of Phosphoproteins, Paul Greengard, Rockefeller Univ.
+ Molecular Basis of Neuronal Function, Charles Stevens, Salk Institute

Conscious and Unconscious Processing of Sensory Information (2:30pm–5:30pm)
Unconscious Synthesis of Different Sensory Information, Barry Stein, Medical College of Virginia
+ Blindsight, Larry Weiskrantz, Univ. of Oxford
+ Dynamic Aspects of Visual-Cortical Function, Torsten Wiesel, Rockefeller Univ.
+ Conscious and Unconscious Processes Following Brain Lesions, Michael Gazzaniga, Dartmouth Medical School

SUNDAY, 9 FEBRUARY

Selective Attention (8:30am–11:30am)
Organization and Development of Attentional Computations, Michael Posner, Univ. of Oregon
+ Cognitive Neuroscience View of Selective Attention in Object Identification, David LaBerge, UC-Irvine
+ Cellular Studies of the Circuitry of Visual Selective Attention in Primates, Robert Desimone, NIMH
+ Separating Mechanisms of Awareness and Attention: A Cognitive Neuropsychological Approach, Mary Jo Nissen, Univ. of Minnesota

Finding Our Way: Neuronal Processing for 3-D Motion (1:15pm–2:15pm)
Topical lecture by Robert Wurtz, NIH

Memory (2:30pm–5:30pm)
High-level Representations in the Cerebral Hemispheres, Stephen Kosslyn, Harvard Univ.
+ Priming and the Organization of Visual Object Memory, Daniel Schacter, Harvard Univ.
+ Object Recognition in Mind and Brain, Irving Biederman, USC
+ Probing the Nature of the Mental Representation of Visual Objects, Lynn Cooper, Columbia Univ.
+ Visual Memory Circuits, Mortimer Mishkin, NIMH

MONDAY, 10 FEBRUARY

Computational Models (8:30am–11:30am)
+ Mechanisms of Visual Development: Ocular Dominance and Orientation Selectivity, Kenneth Miller, CalTech
+ Sparse Coding, Orthogonalization, and Pattern Completion in Theoretical and Real Hippocampal Networks, Bruce McNaughton, Univ. of Arizona
+ Computational Model of Semantic Memory Impairment: Modality Specificity and Emergent Category Specificity, Martha Farah, Carnegie Mellon Univ.

Computations Underlying the Execution of Movement: A Biological Perspective (1:15pm–2:15pm)
Topical lecture by Emilio Bizzi, MIT

Biology of Language (2:30pm–5:30pm)
Rules of Grammar: Linguistic, Psycholinguistic, and Neurolinguistic Evidence, Steven Pinker, MIT
+ Genetic Disorders, Myrna Gopnik, McGill Univ.
+ Genetic Variation and the Differentiation of Cognitive Processes, Thomas Bever, Univ. of Rochester
+ Brain Damage and Aphasia, Alfonso Caramazza, Johns Hopkins Univ.
+ Studies of Language Comprehension with the PET Scan: Processing of French and Tamil Stories by Monolingual French Subjects, Jacques Mehlert, CNRS

Advance registration fees: Regular members, $265; regular nonmembers, $315; student members, $125; student nonmembers, $150; postdoc members, $155; postdoc nonmembers, $180. Deadline for advance registration is 10 January 1992. On-site fees are $25 higher for all others. Fee includes access to the seminar and to all AAAS'92 general sessions. For a registration form and a complete AAAS'92 meeting program, see the 15 November 1991 issue of Science or call 202-326-6450.
Hard Copy your PCR products with one-step TA Cloning™*

A Universal System for Cloning PCR Products

Direct hard copy cloning of PCR* products into the multifunctional pCR2000™ vector is now possible with the new TA Cloning kit from Invitrogen. This system eliminates inefficient, time consuming reactions normally involved in cloning PCR products and allows direct cloning of amplified nucleic acids from genomic DNA, cDNA or recombinant lambda, cosmids and YACs.

TA Cloning requires:

- NO purification of PCR products
- NO modification of primers to incorporate restriction sites
- NO restriction enzyme digestion
- NO modifying enzymes
- NO sequence information

The TA Cloning system from Invitrogen allows blue/white color selection of recombinants from the pCR2000 vector and is useful for most PCR reactions including:

- Symmetric PCR
- Inverse PCR
- Alu PCR
- Sequence independent PCR
- mRNA PCR
- Sequence Tagged Site PCR
- Anchored PCR

TA Cloning is an ideal system for direct sequencing and expression of PCR products and provides a means of safeguarding precious samples for future analysis, probe generation or other manipulations. The prepared pCR2000 vector is designed to take advantage of the universal ragged ends generated by the terminal transferase activity inherent in thermophilic polymerases. Each kit contains prepared pCR2000 vector, ligation reagents and competent E. coli for 20 reactions. For more information on these and other PCR products call:

Toll Free 1-800-955-6288
3985 • B Sorrento Valley Blvd.
San Diego, CA 92121
(619) 597-6200 Phone • (619) 597-6201 Fax

*PCR is covered by U.S. Pat. #s 4,683,202 and 4,683,195 issued to Cetus Corporation.
Circle No. 128 on Readers' Service Card
CALBIOCHEM
The Source for High Quality Immunochemical Reagents

Enzyme Linked Immunosorbent Assays
- Streptavidin and Avidin linked to Alkaline Phosphatase, Peroxidase, β-Galactosidase
- Immunoglobulins linked to Alkaline Phosphatase, Biotin, Peroxidase
- Substrates PNPP, o-NPG, Ω-PD

Radioimmunoassays
- Reagents for labeling Lactoperoxidase, DTPA, TAGIT
- Human Proteins for Standards and Iodination
- RIA grade Primary Antibodies
- Precipitating Antisera for Double-Antibody RIA methods
- Pansorbin®

Immunofluorescent Assays
- Fluorochromes linked to Immunoglobulins and Avidin/Streptavidin Fluorescein, Rhodamine Phycobiliproteins, AMCA

Blocking Reagents
- BSA
- Normal Carrier Sera
- Tween 20

Monoclonal and Polyclonal Antibodies

CALL OR FAX TODAY:
CALBIOCHEM Corporation
10933 North Torrey Pines Rd.
La Jolla, CA 92037
Phone: (800) 854-3417
FAX: (800) 776-0999

Circle No. 167 on Readers' Service Card
Synchrotron Radiation Laboratory. The films were digitized with a drum scanner (Optronix Corp.), and the data were processed with computer programs originally written by Rossmann (19). The native and the Hg data were merged and scaled with the crystallographic program package PROTEIN (20), and the Au data were merged and scaled for anomalous scattering data with programs from the CCP4 package. (S.E.R.K. (U.K.) Collaborative Computing Project No. 4 (Daresbury Laboratory, Warrington, U.K., 1979)).

20. W. Steigemann, PROTEIN: A Package of Crystallographic Programs for Analysis of Proteins (Max Planck Institute for Biochemistry, Martinsried, Germany, 1982).
21. In order to determine the correct space group enantiomorph, phases from the Au derivative anomalous scattering data were calculated in the space groups P6_32 and P6_52 and tested in difference F_{Au} - F_{Hg}. Fourier syntheses. The two Hg sites emerged as the two strongest peaks in the electron density maps when the data were treated in the space group P6_52, whereas the map calculated in P6_32 had much weaker Hg peaks, thus confirming the former as the correct space group.
43. Abbreviations for the amino acid residues are: G, Gly; K, Lys; M, Met; N, Asn; Q, Gln; S, Ser; and T, Thr.
44. We thank N. Sakabe, A. Nakagawa, and N. Watanabe of the National Laboratory of High Energy Physics, Tsukuba, Japan, and J. Farrar of Molecular Structure Corp., the Woodlands, Texas, for use of their data collection facilities. G.G.P. thanks the American Cancer Society, California Division, for a postdoctoral fellowship (J-15-89). Supported in part by NIH grants AI 30725 to S.H.K. and DK 09768 to D.E.K., DOE (Director, Office of Energy Research, Office of Biological and Environmental Research, General Life Sciences Division under contract DE-AC03-76SF00987 to S.H.K.), and the William M. Keck Foundation. Atomic coordinates will be deposited with the Brookhaven Protein Data Bank.

19 August 1991; accepted 21 October 1991

"Of course, I'd like to evolve into something better, but what could that possibly be?"
1992–93
AAAS Fellowships for Scientists and Engineers

Congressional
AAAS Congressional Science & Engineering Fellows Program
Fellows spend one year on Capitol Hill working with Members of Congress or congressional committees as special assistants in legislative and policy areas requiring scientific and technical input. Two fellowships will be offered, with annual stipends of $38,000.

Executive Branch
AAAS-Sloan Executive Branch Science & Engineering Fellows Program
Fellows work in the White House Office of Science and Technology Policy, for one or two years, providing expertise in industrial R&D, technology transfer, international competitiveness, and related issues. One or two Fellows will be selected. Applications are invited from candidates with a minimum of five years industrial experience, through mid-level and senior executives. Stipends are negotiable, depending on qualifications and experience. Applicants must be U.S. citizens.

Diplomacy
AAAS Science, Engineering, & Diplomacy Fellows Program
Fellows work in international affairs on scientific and technical subjects for one year, either in foreign policy at the U.S. Department of State or in international development for the U.S. Agency for International Development. Approximately 12 Fellows will be selected. The annual stipend varies with experience, starting at approximately $38,000. Applicants must be U.S. citizens.

Environmental
AAAS Environmental Science & Engineering Fellows Program
Fellows work as special research consultants with the Office of Research and Development of the U.S. Environmental Protection Agency for 10 weeks in the summer. The detailed, future-oriented research assists ORD in assessing the significance of long-range environmental problems. The stipend is $900 a week. Applicants must be permanent residents of the U.S. Ten Fellows will be selected.

Applicants should be postdoctoral to midcareer scientists and engineers, from any physical, biological, or social science or any field of engineering. The programs are designed to provide each Fellow with a unique public policy learning experience; to make practical contributions to the more effective use of scientific and technical knowledge in the U.S. government; and to demonstrate the value of science and technology in solving important societal problems. All Fellows participate in a rigorous orientation on the relevant congressional and executive branch operations and foreign affairs plus a year-long seminar series on issues involving science, technology, and public policy. The Congressional, Diplomacy, and Executive Branch programs begin in September 1992 (application deadline January 15), and the Environmental program begins in June (application deadline February 15). For additional program information and application instructions, write:

Fellowship Programs/Directorate for Science and Policy Programs
American Association for the Advancement of Science
1333 H Street, NW, Washington, DC 20005 202/326-6600