represent the visual world undergoes a shift analogous to the shift of the image on the retina. Unlike the retinal shift that follows an eye movement, the parietal shift precedes the eye movement and predicts the location of reafferent visual input. This dynamic link between successive retinal images may contribute to the integration of visual information across eye movements and to the construction of a continuously accurate, retinocentric representation of visual space.

REFERENCES AND NOTES
3. We recorded from 36 neurons in the LIP of two rhesus monkeys (Macaca mulatta). Monkeys were prepared for behavioral and physiological recording under sterile surgery with ketamine and sodium pentothal or isoflurane as anesthetics. Training, eye position recording, and neuropsychological recording were done as described [R. H. Wurtz, *J. Neurophysiol.* 32, 727 (1969); M. E. Goldberg, in *Methods in Cellular Neurobiology*, J. L. Barker and J. F. McKeVey, Eds. (Wiley, New York, 1983), vol. 3, pp. 225-248].
5. R. H. Wurtz and C. W. Mohler, *J. Neurophysiol.* 39, 745 (1976); M. C. Bushnell, M. E. Goldberg, D. L. Robinson, ibid. 46, 755 (1981). In the peripheral attention task, the monkey maintains central fixation and is rewarded for releasing a bar when a peripheral stimulus dims slightly. In the fixation task, foveal attention is maintained by rewarding the monkey for releasing the bar at the dimming of the fixation stimulus.
6. A neuron without predictive remapping begins to discharge with a visual latency from the time the stimulus enters the receptive field, that is, at the end of the saccade. Any neuron discharging with a shorter latency shows predictive remapping. Because we cannot determine precisely when the stimulus crosses the outer boundary of the receptive field, we adopted a conservative statistical criterion. For each neuron, a t test was used to compare mean response latencies for blocks of 16 saccade and fixation trials. Neurons with a latency relative to the beginning of a saccade (when the stimulus is still outside the receptive field) that was shorter or not significantly different from the latency relative to the onset of a stimulus in the fixation task were considered to show predictive remapping.
7. We are grateful to the staff of the Laboratory of Sensorimotor Research for its help: J. Raber for veterinary care, K. Powell and H. Macgruder for animal care, C. Crist and T. Ruffner for machining, L. Jensen for electronics, A. Hayes for computer systems, and J. Steinberg for facilitating everything.

14 June 1991; accepted 10 October 1991
Enumerating Buckminsterfullerane Isomers

GEORG THIMM and WILFRID E. KLEE

Science 255 (5040), 92.
DOI: 10.1126/science.255.5040.92