NEW

Srf I
A Unique 8 Base Cutter From Stratagene

As Rare As the Perfect Wave

Srf I is a novel restriction endonuclease developed at Stratagene which recognizes the eight base palindrome 5' GCGCGGCG-3'. *Srf I* cleaves after the third C, producing blunt ends which are useful for cloning applications. *Srf I* joins our expanding list of enzymes certified for pulsed field use. Because of its 100% (G+C) recognition sequence, *Srf I* is an essential tool for megabase mapping and cloning.

Srf I is supplied with Stratagene's unique Universal Buffer, formulated for ease-in-use in single and multiple digests. Each lot is date stamped for guaranteed 100% activity through the expiration date.

Contact Stratagene for our growing list of high quality restriction enzymes, including our new isochozymers which replace outdated commercially available higher priced and lower quality enzymes.

Patents Pending

Please contact Stratagene for the distributor near you.

Germany:
Stratagene GmbH
Telephone: (06221) 40 06 34
Telefax: (06221) 40 06 39

United Kingdom:
Stratagene Ltd.
Telephone: (0223) 42 09 55
Telefax: (0223) 42 02 34

France:
Stratagene France
Telephone: (0590) 72 36
Telefax: (1) 44 28 19 00

Corporate Headquarters:
Ordering and Tech. Services: 800-424-5444
FAX: 619-535-5430. TELEX: 9103809841

Circle No. 85 on Readers' Service Card
A MUTATION IS A TERRIBLE THING TO MISS DON’T!

INTRODUCING MDE™ GEL

AT Biochem’s new MDE (Mutation Detection Enhancement) gel allows you to detect mutations from PCR*-amplified samples using simple electrophoretic techniques, without special equipment and gradients. When compared with standard acrylamide, MDE gel significantly improves detection of single base mutations using either the heteroduplex or SSCP method.

<table>
<thead>
<tr>
<th>HETERODUPELEX METHOD</th>
<th>SSCP METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 cm</td>
<td>Mobility shift</td>
</tr>
<tr>
<td>- Heteroduplex</td>
<td>Control</td>
</tr>
<tr>
<td>- Homoduplex</td>
<td>Mutant</td>
</tr>
<tr>
<td>Homozygous control</td>
<td>MDE</td>
</tr>
<tr>
<td>Heterozygous sample</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>Mutant</td>
</tr>
</tbody>
</table>

A point mutation detected as an additional band after electrophoresis of an 899 base pair fragment in MDE gel.

Autoradiogram comparism of MDE and polyacrylamide gels showing a point mutation in exon 6 of the p53 gene. A mobility shift was detected in the MDE gel but not in the polyacrylamide gel.

For complete technical information call 1-800-282-4626

HydroLink™
Family of High Performance Gels

AT Biochem

HydroLink™
Family of High Performance Gels

AT Biochem, Inc. 30 Spring Mill Drive, Malvern, PA 19355 Telephone: 1-800-282-4626 or 215-889-9300 Fax: 215-889-9304

MDE Gels are for research use only.

Circle No. 2 on Readers’ Service Card

* Patented Process; Cetus Corporation
This Week in Science

Editorial

661 Engineering Research Centers

Letters

ScienceScope

671 AXAF's indirect costs soar higher; budget woes ground NIH scientists; etc.

News & Comment

672 Science Budget: Selective Growth ■ Science and the Domestic Spending Squeeze ■ Civilian R&D: The Big Four Federal Spenders
676 Where Have All Japan's Scientists Gone?
677 Sequencing Venture Sparks Alarm
678 Third World: S(ave) O(ur) S(leep))!
679 Stepping Up the Pressure On Indirect Costs
680 Briefings: Zagury in the Clear ■ Debut for 425-Million-Year-Old Fossil ■ Sarin Indicted ■ Neuro Nerves Calmed ■ More Turmoil Over Orphan Drugs ■ Picture-Perfect Plankton

Research News

682 Pollutant Haze Cools the Greenhouse ■ Hot Nights in the Greenhouse
684 Molecular Design Gets Into a Hole
685 Yellowstone Ecosystem: "Win-Win" Solution
686 “African Eve” Backers Beat a Retreat ■ Choosing a Human Family Tree
688 Boring in on β-Amyloid's Role in Alzheimer's

Articles

690 When Do Anomalies Begin?: A. LIGHTMAN AND O. GINGERICH

Reports

COVER Granophyre from the roof zone of the Muskox intrusion, Northwest Territories, Canada, with a skeletal quartz crystal (violet, ~0.17 millimeter long) surrounded by optically continuous vermicular quartz intergrown with alkali feldspar (blue). The intergrowths reflect the final crystallization of a magma rich in silica and alkalis that coexisted with an underlying silica-poor magma. See page 708. [Photograph by Brian W. Stewart, California Institute of Technology, with cross-polarized light and a 575-nanometer retardation plate]

705 Modeling 100,000-Year Climate Fluctuations in Pre-Pleistocene Time Series: T. J. CROWLEY, K.-Y. KIM, J. G. MENGEL, D. A. NORTON

708 Diffusive Isotopic Contamination of Mafic Magma by Coexisting Silicic Liquid in the Muskox Intrusion: B. W. STEWART and D. J. DEPAOLO

711 Reaction Planning: Computer-Aided Discovery of a Novel Elution Reaction: R. HERGES and C. HOOCK

717 On the Probability of Matching DNA Fingerprints: N. J. RISCH and B. DEVLIN

723 Reversal of Integration and DNA Splicing Mediated by Integrase of Human Immunodeficiency Virus: S. A. CHOW, K. A. VINCENT, V. ELLISON, P. O. BROWN

728 Processing of the Amyloid Protein Precursor to Potentially Amyloidogenic Derivatives: T. E. GOLDE, S. ESTUS, L. H. YOUNKIN, D. J. SELKOE, S. G. YOUNKIN

730 The Influence of Prior Synaptic Activity on the Induction of Long-Term Potentiation: Y.-Y. HUANG, A. COLINO, D. K. SELIG, R. C. MALENKA

733 Chondroitin Sulfate as a Regulator of Neuronal Patterning in the Retina: P. A. BRITIS, D. R. CANNING, J. SILVER

Technical Comment

Book Reviews

740 The Detection of Gravitational Waves, reviewed by P. R. SAULSON Neuronal Networks of the Hippocampus, C. KOCH Electrogenic Ion Pumps, B. HILLE

Vignettes: The Market for Books Books Received

Products & Materials

744 Cell Lysis Reagent Simplifies DNA Release Particle Size Analyzer DNA Insertion Marker Light Box Nanoliter Injector Centrifugal Ultrafiltration Devices Photon-Counting Spectrofluorometer Premixed Electrophoresis Buffers Literature
Why use a messenger when you can go to the source?

Introducing the first Eukaryotic system for in vitro coupled transcription/translation.

- FAST - No RNA prep time. DNA to autoradiograph in 6 hours.
- EFFICIENT - Produces 2-6 times the protein of standard reactions, thus more protein is available for functional studies.
- FLEXIBLE - Systems available for DNA cloned downstream from SP6 and T7 RNA polymerase promoters.
- RELIABLE - Based on Promega’s high quality Reticulocyte Lysates.
- CONVENIENT - A unique, non-radioactive, functional luciferase assay control is provided.

...only from Promega.

Reagents and a detailed protocol provided for 30 coupled reactions.

- TNT Lysate System, SP6 promoter, Cat.# L4600
- TNT Lysate System, T7 promoter, Cat.# L4610

Promega Corporation
2800 Woods Hollow Road
Madison, WI 53711-5399 USA
Toll Free 800-356-9526
Telephone 608-274-4330
Fax 608-273-6967
Telex 62057092

800-356-9526

*patents pending
TNT is a trademark of Promega Corporation. © 1991 Copyright Promega Corporation. All Rights Reserved.
A DENSITOMETER FOR ALL REASONS

Quantitation...1-D gels, Northerns & Dot Blots
Quantity One® -- software for all types of quantitation from films, gels, blots and photos.

RFLP Automatic Analysis
RFLPrint™ -- software for rapid, automatic RFLP and DNA fingerprint analysis.

DNA Sequence Reading
DNA Code® -- for automatic reading and post sequence searching of DNA sequence from films.

2-D Gel Analysis & Databasing
PDQUEST™ -- the world standard. Ask for our list of publications.

Call 1-800-777-6834 for more information or a demonstration with your data.

The Discovery Series™ offers 21μ resolution, two-minute scan times and large scan areas.

405 Oakwood Road, Huntington Station, NY 11746 • Tel.: 800-777-6834 • 516-673-3939 • Fax: 516-673-4502

In the U.K.: Vital Scientific, Ltd., Sussex, England • Tel.: (0403) 710479 • Fax: (0403) 710382
In Japan: Toyobo Co., Ltd., Osaka, Japan • Tel.: 06-348-3786 • Fax: 06-348-3322
In Germany, Austria and Eastern Europe: Süd-Laborbedarf GmbH, D 8035 Gauting, FRG • Tel.: 089 8506527 • Fax: 089 850 7646

pdi protein + dna imageWare systems™

Circle No. 47 on Readers' Service Card

Come see us at ASBMB/Biophysical Meeting Booth No. 1526/1528.
Engineering Research Centers

An innovative program sponsored by the National Science Foundation (NSF) is having important consequences at a number of universities. The fostering of 18 Engineering Research Centers (ERCs) has led to better instruction of engineering students, enhanced interdisciplinary research leading toward practical applications, and beneficial interactions with and financial support by industry.

In 1985, concerns began to arise about declining U.S. industrial competitiveness. The ERC program was created to respond to this and to the fact that many opportunities in engineering research required an interdisciplinary approach. A 1990 NSF publication described goals of the ERCs: "A primary objective of the program is to bring engineering and scientific disciplines together to address fundamental research issues crucial to the next generation of technological advances.... An equally important aim is to educate a new generation of engineering students in a cross-disciplinary team approach to problem-solving, increasing their ability to contribute productively to industry.... A major goal of the ERC Program is to facilitate the more efficient transition of advances in fundamental research in universities into high-quality, competitive products and processes in industry."

Each of the 18 ERCs occupies a niche within six technological fields: manufacturing and design; materials processing for manufacturing; optoelectronics, microelectronics, and communications; bioprocessing and biomedical engineering; resource recovery and utilization; and infrastructure and environment. Major technologies that influence the nation’s quality of life and economic strength are included in the ERC efforts.

The ERCs derive their funding support from diverse sources. The total contribution from NSF during 1991 of $45.6 million constituted 33% of the total. Industry supplied 30%, other federal agencies 20%, universities 11%, and states 6%. In addition to money, industry contributes equipment and often stations company personnel at the universities. The monetary support takes the form of membership fees. There are as many as three levels of membership entailing differing fees and privileges. The fees also vary among the ERCs. Some have top annual fees as high as $200,000. For others, the maximum is $100,000 or less. The lowest level ranges from $5,000 to $25,000 for small companies.

At present there are a total of 697 participating memberships held by 483 companies. Some of the major U.S. companies have multiple memberships. For examples, IBM participates and pays fees in ten centers. Eastman Kodak, GE, and AT&T are each members of nine centers. The total memberships continue to increase.

Industry engineers on campus teach classes in conjunction with faculty. They participate in research with faculty and students. They advise students on career choices as well as on research directions. They act to ensure effective transfer of information between the ERC and their company and vice versa.

One of the advantages enjoyed by participants in ERCs is their research support infrastructure. They enjoy unusually good research and computer equipment. Technicians and maintenance funds ensure the readiness of equipment to produce reliable measurements.

One of the latest ERCs to be activated involves the Universities of Minnesota and Wisconsin with the center located at Madison. Its special niche is plasma-aided manufacturing. In a partial vacuum, high electric fields give rise to an ionized plasma whose characteristics depend on pressure and gaseous content. The phenomena are complex. It is a goal of the center to gain a complete understanding of everything that takes place, from the initiation of an electric field in the plasma to an actual industrial application. Research at the center includes plasma etching or deposition, plasma synthesis of high-technology refractory materials, and plasma modification of materials. Already the hardiness of many irregularly shaped metallic objects has been usefully improved by nitrogen bombardment. The total present and potential markets for applications of plasma-aided manufacturing have been estimated to be more than $100 billion.

The other ERCs have programs that also are relevant to industrial competitiveness. Progress that is being made by each of the ERCs is described in an NSF report that will be released soon. An examination of the report shows that the $45.6 million devoted annually to the centers is being leveraged to produce highly significant effects.—PHILIP H. ABELSON

"I hear your new product is ready."

"Yep. Mmm, the lasagne looks tasty."

"Patents checked?"

"Wouldn't have tested otherwise."

"And regulatory compliance?"

"It checks out..."

"...which is more than I can say about that meatloaf."

"Hey, where're you getting so much help?"

The answer is in Dialog.

Information—complete, precise, up-to-the-minute. It's your most powerful research tool. Find exactly what you need to know fast in Dialog—the world's first and largest electronic library. We offer over 400 diverse, detailed databases readily accessible online via computer and modem, many even on compact disc. You probably won't have to look anywhere else. See your Information Specialist about Dialog. Or call for a free kit on Dialog information for your industry.

1-800-3-DIALOG

DIALOG INFORMATION SERVICES, INC.
A KNIGHT-RIDDER COMPANY

Dialog Tools for Chemistry: Research and industry news, plus chemical substructures and properties, patent, trademark, safety, regulatory, environmental, and competitive data. Full text and/or abstracts from newspapers, newsletters, journals, conference proceedings, citations, handbooks, encyclopedias. Some sources updated as often as daily, even continuously.

© 1991 Dialog Information Services, Inc., 3460 Hillview Avenue, Palo Alto, California 94304. All rights reserved. DIALOG is a servicemark of Dialog Information Services, Inc., Registered U.S. Patent and Trademark Office.
Access to Genetic Sequence Data

In Leslie Roberts’ News & Comment article “MRC denies blocking access to genome data” (13 Dec., p. 1583), the head of the British Medical Research Council (MRC) Human Genome Mapping Resource Center, Tony Vickers, is reported as saying he does not know why researchers might want to scan through and download genetic sequence data freely. He says that the MRC possesses analytic software that small labs could not easily have access to otherwise.

This attitude is wrong and disappointing. One of the main aims of the Human Genome Project should be to develop innovative new software for analyzing sequence data and collating it with other biological data. My colleagues and I are now working on artificial intelligence techniques that we intend to apply to learning to recognize structure in sequence data. This work has funding from the National Institutes of Health, and teams at a number of other universities are doing similar research. Free access to primary data will be essential for testing the methods that are developed.

Computer science and artificial intelligence promise to make available tools for performing sequence analyses far deeper than simple recognitions of homology. It would be a grave mistake if the MRC, or any other database custodian, adopted as a standard any particular existing analytic software.

CHARLES ELKAN
Department of Computer Science and Engineering,
University of California, San Diego,
La Jolla, CA 92033-0114

Chronic Fatigue Syndrome

I would like to address Joseph Palca’s Research News article “On the track of an elusive disease” (20 Dec., p. 1726). I have used the polymerase chain reaction, under conditions of reduced stringency, to seek out viral sequences related to either herpes viruses or retroviruses in patients with the chronic fatigue syndrome (CFS). This work led to the culturing of a virus that appeared to contain sequences of both herpes virus and retrovirus. I notified the Centers for Disease Control (CDC) early in 1991 that an atypical virus had been repeatedly cultured from a CFS patient. The cytopathic effect (CPE) seen in culture was characterized by foamy cell changes. A virus inducing a similar CPE was isolated from a patient with an unexplained severe encephalopathy. Many additional patients have also tested positive by culture. CDC officials were invited to visit my laboratory and review the culture findings, but declined to do so.

A meeting sponsored by the California Department of Health in San Francisco and a National CFS Advisory Council Meeting held at CDC in September 1991 provided additional opportunities to present ongoing research and to show photomicrographs of the CPE and electron micrographs of the viral particles. At each meeting, I emphasized the importance of obtaining additional sequence data to characterize the type of virus involved. Contrary to Palca’s account, I did not consider the audience at either San Francisco or at CDC to be “hostile.”

A brief report describing the culture and electron microscopic findings in the initial CFS patient was submitted for publication and was rejected. I consider a reviewer’s comment to Palca that most of the data were “negative or uninterpretable” to be a breach of the confidentiality of peer review that may reflect the type of personal bias that has continually led to questioning of even the existence of CFS. The best response to this type of skepticism is to continue to perform careful science and to obtain conclusive sequence data on the viruses we have isolated. My laboratory is actively engaged in this research.

I trust that the publicity associated with our work will encourage the efforts of others to investigate CFS patients for evidence of viral infection.

W. JOHN MARTIN
Department of Pathology,
University of Southern California School of Medicine,
Los Angeles, CA 90033

Response: Martin’s concern that the confidentiality of the peer review was breached by my report is understandable but unfounded. In the course of interviews for this story, one expert in the field criticized Martin’s work and explained that he knew its details because he had been asked to peer review a paper Martin had submitted for publication. The scientist did not share his review or the paper with me, nor even say to which journal it had been submitted. I mentioned his role as a reviewer simply to give the reader some indication of his credibility as a critic, and to protect his confidentiality, I did not name him.—JOSEPH PALCA
UnGraph

X,Y Digitizer Package

for IBM PC/PS2 & Compatables

Scan almost any graph, chart, drawing, or line with almost any office scanner (TIFF or PCX) and **UnGraph** gives you its X,Y-coordinates with a level of precision you choose. **UnGraph** has an automatic line follower to do the hard work, and a paint tool lets you fill in any gaps. Results are in ASCII or DXF formats, which are easily exported to other programs. Throw away your digitizing tablet! $399

FREE DEMO

NEEDS MOUSE

BIOSOFT

PO Box 10938, Ferguson, MO 63135

Tel: (314) 524-8029 Fax: (314) 524-8129

In Europe: BIOSOFT, 22 Hills Road, Cambridge CB1 1JP, U.K. Tel: +44 223 68622 Fax: +44 223 312873

ORDER ADDITIONAL COPIES OF ARTICLES YOU HAVE SEEN IN SCIENCE

FOR FULL DETAILS AND PRICES, CALL THE SCIENCE REPRINT SERVICE AND ASK FOR CORRINE HARRIS AT (202) 326-6527 OR FAX YOUR REQUEST TO (202) 682-0816. YOU MAY ALSO WRITE US AT SCIENCE, 1333 H ST., N.W. WASHINGTON, D.C. 20005.

MASTER CARD AND VISA ACCEPTED

Alar: The Aftermath

Eliot Marshall's News & Comment article about Alar and its hydrolysis product UDMH (unsymmetrical dimethyl hydrazine) (4 Oct., p. 20) offered a balanced account of the economic fallout 2 years after Alar was taken off the market, but muddied the waters by putting a somewhat bizarre spin on the results of new rodent bioassay of UDMH. A subsequent editorial by Daniel E. Koshland, Jr. (1 Nov., p. 629) reinforced and compounded Marshall's misinterpretation. Even a cursory look at the actual data in the 1991 and 1973 bioassays shows clearly that "the basic toxicology on Alar" has not "taken a surprising turn." In fact, given the vitriolic criticism of the earlier study, the new industry-sponsored results are only surprising for how much crow the critics may have to eat. In the 1973 study (1), 42 out of 50 male mice given 23.3 milligrams of UDMH per kilogram of body weight per day (mg/kg/day) developed blood-vessel tumors. Eighteen years later, 31 out of 67 male mice (46%) given 7.3 mg/kg/day developed these malignancies, along with 63% of those given 13 mg/kg/day (2). How can these new data be viewed as anything other than a confirmation and amplification of the earlier study, at even lower doses than previously analyzed (3)?

Marshall's article and a subsequent response by Victor J. Kimm at the Environmental Protection Agency (Letters, 29 Nov., p. 1276) emphasize small changes in the official point estimate of UDMH's potency. At most, such changes represent a tiny "signal" compared with the "noise" inherent in potency estimates (which itself is only a fraction of the total uncertainty in risk) (News & Comment, 9 Mar. 1990, p. 1173). In the case of UDMH, even the factor of 20 Marshall discusses is largely an artifact of different methods EPA has used to adjust for peculiarities in the bioassay data (4). Without all the arcane of potency calculation, one can easily show that Alar posed a potentially serious hazard. Using national survey data on apple juice consumption and the manufacturer's own data on UDMH residue levels, one can show that a plausible dose estimate for many young children was about 0.0005 mg/kg/day, or about 1/2000 of the equivalent dose that causes tumors in roughly half of all mice (5). Therefore, unless the dose-response function is sharply nonlinear or has a threshold, the excess risk to many children was roughly 1 in 4000, or 250 times the 1 in 1 million standard generally regarded as de minimis.

So, it seems that the risk assessments Koshland disparages as "clearly dubious" were more prophetic than were the dire
PRECISION IN YOUR HAND

EPPENDORF VARIPETTE® 4810 and EPPENDORF COMFORPETTE® 4800. Two precision instruments tuned to modern analysis. A composition of finest craftsmanship and technical expertise. These piston-stroke pipettes are entirely autoclavable. All functions are executed with one single control button: volume adjustment, measuring stroke, blow out and tip ejection. A special feature of the Varipette 4810 is the digital volume readout which is visible from above. Our tone-setting pipette generation is designed for volumes from 0.5 µl to 2,500 µl. Eppendorf products: human skill and pioneering precision in perfect harmony.
Pure mRNA in Minutes...

...Directly from Small or Large Samples of Cells or Tissue.

FastTrack™ and MicroFastTrack™ set the industry standard in high quality mRNA isolation.

MicroFastTrack™*: 20 Reactions
- Ideal for PCR, Northern and cDNA synthesis
- Isolation from samples ranging in size from 10-3 x 10⁶ cells or 10-250mg of tissue.
- Reproducible yields of high quality mRNA.

FastTrack™*: 6 Reactions
- mRNA isolation for Northern, cDNA, library construction, PCR, microinjection, RNA protection studies and in vitro translation.
- Isolation from samples ranging in size from 10⁷-10⁸ cells or 0.4-1.0 gram of tissue.
- Fast, efficient recovery of large amounts of polyA+ RNA from a variety of sources.

Both systems offer:
- High yields of intact mRNA with low ribosomal contamination.
- Eliminate the need for total RNA isolation or the use of toxic chemicals.
- The most cost effective means of generating high quality mRNA.
- Consistency, convenience and the fastest isolation time.

For the very best in direct mRNA isolation FastTrack™ and MicroFastTrack™ are the choice of thousands of research labs worldwide. When the quality of your mRNA is important, turn to the original source for purity, reliability and convenience; turn to Invitrogen.

Toll Free 1-800-955-6288

Invitrogen CORPORATION

3985 • B Sorrento Valley Blvd. • San Diego, CA 92121
(619) 597-6200 Phone • (619) 597-6201 Fax

Circle No. 80 on Readers' Service Card
CUSTOM DNA SYNTHESIS
PURE & SIMPLE

- **PRICE** as low as $3 per base plus setup
- **SUPERB TECHNICAL SUPPORT**
- **IMPECCABLE QUALITY**
- **WORLD'S FASTEST SERVICE**

MIDLAND
THE UNDISPUTED #1
CUSTOM DNA SYNTHESIS SERVICE

THE MIDLAND CERTIFIED REAGENT COMPANY
3112-A West Cuthbert Avenue
Midland, TX 79701

PHONE 1-800-247-8766 FAX 1-915-694-2387

Circle No. 41 on Readers’ Service Card

ELECTRON MICROSCOPY
SOUTHERN RESEARCH INSTITUTE

The Electron Microscope Facility at Southern Research Institute is dedicated to resolving a broad range of research and development problems in the industrial and medical areas. This facility has allowed an increasing number of investigators to utilize electron microscopy as an experimental tool. If you have a requirement for electron microscopy work, consultation, or collaboration in these areas, we can be of service to you. For additional information please contact:

Dr. Anis Chowdhury Dr. Lee J. Wilkoff
(205) 581-2687 (205) 581-2413
Fax No. (205) 581-2877

Circle No. 70 on Readers’ Service Card

NANOTECHNOLOGY
Reprint

Engineering a Small World:
From Atomic Manipulation
 to Microfabrication

This 42-page special section, reprinted from the 29 November issue of Science, is your entry to the expanding world of small-scale engineering. It's a field that spans microelectronics, materials science, chemistry, molecular biology, and microscopy. In this special section, ten illustrated articles by research leaders and by science journalists present the full scope of this small world.

For each copy, send $4.00 plus $.50 for postage to:

Science
Attention: Corrine Harris
1333 H Street, N.W.
Washington, DC 20005
Telephone: 202-326-6527
Visa and MasterCard orders accepted by
FAX: 202-682-0816

All orders must be prepaid. Payment in U.S. dollars only. Bulk rates available.
Wouldn't It Be Nice If Automated DNA Sequencers Spoke The Same Language As Researchers?

Why be forced into reading chromatogram-like peaks when you can see your data the way you're used to seeing it: as sequence ladders.

The new BaseStation™ Automated DNA Sequencer from Millipore reads, analyzes and presents data as familiar four-lane sequence ladders. In fact, it's the only sequencer to display data this way.

The system is able to accomplish this because of the novel way it looks at DNA fragments in a gel. Light emitted by fluorescing DNA is captured inside a charge coupled device (CCD) camera. The CCD is a matrix array of thousands of individual detectors, each capable of registering a single photon of light. This lets the camera see DNA as well-defined bands, allowing for accurate interpretation of data.

Up to 20 kb of primary sequence can be analyzed every day. Over 500 bases are run per sample, with 98% of the first 400 identified unambiguously by the BaseStation system.

The BaseStation system also analyzes your data in real time. A Fluorogram™ (similar to an autoradiogram) is displayed on screen as the bands move down the gel, so you can assess the quality of the sequencing chemistry. A typical run takes 7 hours, including pre-electrophoresis and loading. When it's done, so is your analysis.

And our DNA Sequence Manager makes reviewing data simple. It automatically generates "contigs" from your sequence sets. And to aid in resolving areas of ambiguity, the system can also display the original Fluorogram image.

For a demonstration or more complete information, call 800-225-1380 in the U.S.; in Japan call (81) (3) 3474-9111; and in Europe call Dick Barker at (33) 1.30.12.72.34.

MILLIPORE

©1992 Millipore Corporation

Circle No. 77 on Readers' Service Card
UNDER 10 MINUTES TO PROTEIN FREE DNA

With

EnZap™

YOUR REACTION

LOAD EnZap

SPIN 2-5'

ENZYMES/PROTEINS RETAINED

BUFFERED DNA

Kinasing
Phosphatase
Restriction Digest
Ligation
Amplification
Sequencing

• No Phenol/Chloroform • >90% DNA Recovery • >98% Protein Removal
• >99% Enzyme Removal • High Protein Capacity • Low DNA Affinity

Trial Size 5 Tubes Cat. No. EZ-5 $25.00
Regular Size 25 Tubes Cat. No. EZ-25 $90.00
Economy Size 100 Tubes Cat. No. EZ-100 $300.00

BioVentures, Inc.

P.O. Box 2561
848 Scott Street
Murfreesboro, TN 37133-2561

1-800-235-8938 615-896-7353 FAX: 615-896-4837

Circle No. 79 on Readers' Service Card
the neuroepithelial end feet, which in turn would signal neuronal precursor cells to polarize and differentiate in the wrong place or time. The attachment of both vitreal and ventricular end feet and the correct timing of their detachment are believed to be critical to retinal ganglion cell differentiation, resulting in the localization of the cell body at the vitreal surface (2, 26). Thus, chondroitin sulfate, perhaps along with other glycosaminoglycans, may be a key regulatory factor in these phenomena.

Our results suggest that the graded front of chondroitin sulfate that recedes centrifugally across the retina, perhaps in combination with bound tropic and trophic factors (27), allows retinal ganglion cells to differentiate sequentially and polarize their cell bodies and axons in their proper orientation.

REFERENCES AND NOTES

15. MAB TUJ1 is directed to a neuron-specific type III b-tubulin isofrom. [M. K. Lee, J. B. Turtle, L. I. Rehahn, D. W. Cleveland, A. Frankfurter, Cell Motility and the Cytoskeleton 17, 118 (1990)]. Because this isofrom is detectable in neurons as early as terminal mitosis, the antibody allowed for the detection of RGC bodies and their axons during the earliest stages of their differentiation.
16. MAB CS-56 is specific for the GAG portion of native chondroitin sulfate proteoglycan and binds to both the 4- and 6-sulfated moieties.
17. Embryonic eyes were dissected and extracellular tissues removed. Retinas were mounted vitreal side up on sartorius filters, fixed with 4% NBF, permeabilized with 0.3% Triton X-100 and incubated with CS-56 or TUJ1 overnight at 4°C. For double labeling, primary and secondary antibodies were added sequentially. Whole mounts were incubated in goat antibody to immunoglobulin M and G (gamma chain-specific).
19. Chondroitin ABC lyase purified from Protein vulgaris catalyzes the eliminative cleavage of N-acetylb-hexosaminide linkages in chondroitin 4- and 6-sulfate, yields mainly disaccharides with A4-hexurionate at 85 Hexa-sulfate, heparin and heparan sulfate, and leaves the core protein intact.
20. Control retinas were grown in media with no chondroitinase (n = 30). In addition, retinas were cultured in the presence of keratan sulfate, heparin and heparan sulfate, and leaves the core protein intact.
21. Rat eyes were taken at E12.5 and E13.5. Retinas along with intact lens and vitreous were cultured in DMEF-12 supplemented with 10% FCS in 24-well dishes at 37°C in a humidified environment with 5% CO2 for 24 or 48 hours. The media used for enzyme perturbations included chondroitin ABC lyase (ICN, 1 U/ml). In some perturbation experiments a broad spectrum protease inhibitor was added (2-Makroglobulin, ICN, 1 mg/ml). Under these conditions, retinas remained healthy: no differences in numbers of pyconic nuclei visualized in serial 1-μm plastic sections were observed between control and treated retinas. In preparations that were cultured for 48 hours with chondroitin ABC lyase, chondroitin sulfate could not be detected with CS-56 immunostaining.
22. In the enzyme treated retinas, the radial nature of the non-neuronal cells (TUJ1-negative), as identified with antibodies to nestin, remained intact.
28. We thank A. Frankfurter for the TUJ1 antibody, C. Doller and K. Sofranko for technical assistance, U. Rutishauser for the anti-NCAM antibodies and the endonemuraminidase, R. McKay for antibodies to nestin, and R. H. Miller, M. P. Myers, and R. J. McKean for comments on the manuscript. Supported by the National Institutes of Health, the Daniel Heumann Fund, and the Brumagin Memorial Fund.

6 September 1991; accepted 19 December 1991

"Frankly, I'd rather be mythical than extinct."
Pumping Ions

All cellular life forms establish ionic concentration gradients across their cell membranes by active transport of ions. Apparently proteins that couple ion transport to a source of free energy have arisen several times in evolution. Escherichia coli uses an ATP-dependent ion pump that is homologous to the well-known Na\(^+\)-K\(^+\), Ca\(^2+\), and H\(^+\)-K\(^+\) pumps of animals. Halobacteria evolved light-driven pumps for H\(^+\) and Cl\(^-\), and almost all bacteria and eukaryotes have cytochrome oxidase that pumps protons as part of electron transport and coupling proteins (F_0F_1 ATPase) that synthesize ATP at the expense of the proton gradient.

The Na\(^+\)-K\(^+\) pump has been studied for half a century. The concept of energy-requiring vectorial transport was introduced more than 50 years ago, and by 30 years ago the energy source (ATP) had been identified, the concept of a strictly stoichiometric coupled transport cycle had been established, and an appropriate ATPase activity had been discovered in broken cell membranes. Subsequently the transport protein was solubilized, purified, and sequenced, and a large number of intermediate steps in the overall cycle were revealed. Perhaps the most interesting intermediates are several "occluded" states in which transported ions seem to be trapped as in an airlock in their transit across the membrane.

Despite a long history of sophisticated observation, we still do not understand the molecular details. How are ions picked up on one side of the membrane and deposited on the other? Peter Läuger's posthumous book provides an admirable distillation of a complex experimental literature and a clean theoretical structure for kinetic analysis. It is exciting to be guided by such a sure hand through what would otherwise be very difficult theoretical and experimental territory. Läuger's legacy will be a paradigm for thinking in this field for many years to come. This is a biophysical masterclass. It will reward repeated study.

The book begins with a short overview of classes of ion pumps and then settles into a serious introduction to physical principles and the theoretical background of each of the methods for studying pumps. We learn about the thermodynamics of state diagrams, energy levels and efficiency, steady-state and transient kinetics, the contribution of pumps to electrical properties of membranes, and the theory of membrane fragments coupled to planar bilayers. This part would make an excellent graduate reading seminar in biophysics, a skillful case study exercising a wide range of physical thinking in a biological context. It will be equally interesting to researchers studying bioenergetics and molecular motors who face the same problems of kinetics and energetics of cyclic state diagrams. The presentation here cuts deftly to the core and is a strong model of a self-consistent kinetic framework achieved through notational simplicity and deep physical insight.

The second half of the book reviews progress made on each of the pumps. This part will be especially useful to those who teach about primary active transport and bioenergetics in classes in cell physiology. The style is refreshingly direct. Sharp conclusions are drawn without waffling over fuzzy data. The greatest amount of space is devoted to the Na\(^+\)-K\(^+\) ATPase. The classical Post-Albers cycle is reviewed in detail, together with newer extensions. Results of rapid mixing, filtration, current-voltage, voltage- and ATP-jump, and charge-transient experiments are brought in to establish microscopic rate constants and rate-limiting steps. All is summarized in a reaction diagram with 14 states and 20 reaction steps. Values for 29 rate constants are estimated. At this level tremendous progress has been made in the last 15 years.

As the title implies, active transport of ions moves electric charge as well as making a concentration gradient. In Läuger's earlier field of ion channels, the ability to measure charge movements and voltage sensitivity of elementary steps has been central to rapid progress in understanding. The same powerful approaches are now being applied to ion pumps, and the formalisms developed in this book show how electrical measurements can be used to dissect elementary steps of the transport cycle.

A valuable feature of this well-produced book is the combination into a neat and readable package of both the theoretical background and the observations of a large field of transport research. Experimentalists trained in the use of Ockham's razor may be surprised at the large number of steps, coefficients, and rate constants used to describe the action of one macromolecule. Indeed, the models go well beyond existing observation. However, the book teaches us how to prepare the framework for future analysis by meticulous representation of each anticipated process. Experiment then can determine which steps are rate-limiting or kinetically important. Structural biologists may also be surprised at the relative lack of structural correlates of any of the kinetic events in pumping. This book may be the first and last monographic summary of a great era that will surely stimulate molecular discovery through genetic engineering and possibly atomic-resolution crystallography. It is a great read and a must for all in the transport and bioenergetics fields.

Bertil Hille
Department of Physiology and Biophysics,
University of Washington School of Medicine,
Seattle, WA 98195

Books Received

Vignettes: The Market for Books

The impressive reviews that had marked the appearance of [Loren Eiseley's] *Darwin's Century* were hardly mirrored in the volume's sales. Some 3,500 books had been shipped during the five months following publication, and Eiseley's royalty income, based on thirty-seven and one-half cents a copy, shrank to a mere $251.63 for the six-month period ending October 31, 1959. . . . *The Darwin market seems to be glutted,* . . . wrote [Eiseley's editor at Doubleday] ominously in May 1959.

—Gale E. Christianson, in *Fox at the Wood's Edge: A Biography of Loren Eiseley* (Holt)

Extended general treatises on cellular biology have largely gone out of fashion in favor of more circumscribed works dealing with particular aspects of the subject.

If a prompt translation is any measure of the country's receptivity to the theory expounded in the work translated, then in the case of the *Origin of Species* Italy ranked as the third most receptive, along with Russia and the Netherlands.

—Giuliano Pancaldi, in *Darwin in Italy* (Indiana University Press)

Dear Sir

I am much flattered by your enquiry after my book but it will not be out till March.

I shall have no copies of it in my own hand but if you wish it I will send word to the Publisher to send you a copy but I thought that before doing so I would ascertain whether you might not rather like to order it of your own bookseller.

I am Sir/Your obliged servant

—Michael Faraday writing to Edmund Robert Danielli, 15 January 1827, as transcribed in *The Correspondence of Michael Faraday*, vol. 1 (Frank A. J. Lames, Ed.; Institution of Electrical Engineers, London)

