mM CaCl₂, 1 mM MgCl₂ bubbled with a mixture of 95% O₂ and 5% CO₂. For experiments, slices were bathed in the same solution. Patch-clamp recordings were made [O. P. Hamill et al., Pflügers Arch. 391, 85 (1981)] from swellings ranging from 5 to 15 μm, which were clearly visible under Nomarski optics at ×600. Pipette-filling solutions for whole cell recordings are given in the figure legends. Additional methodological details can be found in (3) and (9).

15. The patch pipette solution contained 140 mM KCl, 10 mM EGTA, 4 mM magnesium adiponitri- triphosphate (MgATP), 10 mM Hepes (pH 7.3) with the addition of 100 μM guanosine triphosphate (GTP) to support GTP-binding protein function.

17. The patch pipette solution contained 120 mM CaCl₂, 10 mM tetraethyl ammonium chloride (TEA), 10 mM EGTA, 4 mM MgATP, 100 μM GTP, 10 mM Hepes (pH 7.3). The bathing solution was either artificial cerebrospinal fluid (10) or 105 mM NaCl, 4 mM CaCl₂, 10 μM tetrodotoxin, 10 mM TEA, 10 mM BaCl₂, 10 mM Hepes (pH 7.3). The Ca²⁺- currents were blocked by 200 μM Cd²⁺.
26. We thank L. O. Trussell, G. A. Augustine, F. E. Dudek, and J. L. Yakei for discussions and readings of this manuscript. Supported by grant NS30016 from NIH.
29 May 1992; accepted 27 October 1992

TECHNICAL COMMENTS

Polyethylene Bags and Solar Ultraviolet Radiation

In their study of the effects of solar ultra- violet (UV) radiation on natural phytoplankton assemblages in Antarctic waters, R. C. Smith et al. (1) used Whirlpak polyethylene bags as used by Z. Z. El-Sayed et al. (2) as sample containers during their in situ incubations. On a cruise in the Pacific from Chile to California, in March and April 1992, we placed replicate aliquots of water samples, taken from a depth of 5 to 10 m, in Whirlpak bags (18 ounces) and in round quartz glassware vessels (250 ml). Samples were then placed in deck incubators with the temperature controlled by flowing surface seawater and were exposed to direct solar radiation. Some samples were covered with plastic filters for 6 to 8 hours, centered at local noon. Rates of photosynthesis were determined by standard radio- carbon techniques (3); chlorophyll a concentra- tions were determined by fluorometry after extraction in methanol (4).

We found a significant difference (P < 0.001) in photosynthetic assimilation rates for samples in glassware as opposed to bags when the samples were exposed to solar radiation without any filter and when they were covered by mylar, which absorbs ultraviolet B (UVB) radiation (280 to 320 nm) (Fig. 1). This inhibitory effect was not decreased by leaching the bags in 1 N HCl for 12 hours. The results of our transmission tests agree with those in (2), which showed only 68% transmission of UVB at 300 nm. It is apparent that polyethylene bags absorb UVB, which results in a toxicity that significantly lowers the rate of CO₂ assimilation.

In spite of artifacts associated with the use of polyethylene bags, the general con- clusions reached by Z. Z. El-Sayed et al. (2) and by Smith et al. (1) are similar to our results (3, 5), which were obtained with glassware. There does not appear to be a temperature dependence associated with the toxicity produced by polyethylene bags, as similar results were obtained in Antarctic and in tropical waters. We do not know, however, whether different taxonomic groups of organisms would react in the same way as that noted in our experiments. It would therefore seem advisable for those studying the effects of solar UV radiation on microbial populations to first ascertain the validity of measurements made with the use of polyethylene bags.

Osmund Holm-Hansen

E. Walter Helbling

Polar Research Program, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92039-0202

REFERENCES AND NOTES

6. Supported by National Science Foundation grant DPPB8-10462 and by the Alternative Fluorocar- bons Environmental Acceptability Study.

18 August 1992; accepted 8 October 1992

Response: Clean techniques and control studies (1–3) were performed before, during, and after the icecovers ’90 cruise. We checked and found no evidence for polyeth- ylene bag contamination or toxicity.

Before the cruise, laboratory cultures and field samples of mixed phytoplankton com- munities were incubated in 250- or 500-ml untreated Whirlpak bags for different periods (up to 8 hours) while being exposed to darkness or to light-saturating fluorescence that had passed through a glass plate [pho- tosynthetically available radiation (PAR) only]. When compared with replicate samples in wide-bottom glass Erlenmeyer flasks, we found no decrease in volumetric produc- tion rates (mg C/m²/hour) and no toxic effect.

At sea, we observed that extended (up to 14 hours) exposure to low amounts of UVB or UVA radiation, or both, had no effect on the in situ primary production.
Polyethylene Bags and Solar Ultraviolet Radiation
Osmund Holm-Hansen and E. Walter Helbling

Science 259 (5094), 534.
DOI: 10.1126/science.259.5094.534