NEW DIMENSIONS
IN BIOTECHNOLOGY

Your 1993 Catalog is Here!

Stratagene's 1993 Catalog features many new and exciting products. Among them are new vectors for mammalian and bacterial expression, vectors to quickly subclone amplified fragments, thermostable ligases, mycoplasma detection, in situ hybridization, new DNA sequencing enzymes, a benchtop cold chamber, a robotic thermocycler and much more. Please call Stratagene or the Stratagene distributor nearest you to receive your personal copy of the 1993 catalog. Also ask to be placed on the mailing list to receive our Strategies Newsletter and future product information.
Stratagene's pCR-Script™ cloning kit is designed to efficiently clone PCR* products without requiring special primers or post-PCR treatment. PCR products are simply incubated with the predigested plasmid pCR-Script SK(+) DNA, rATP, T4 DNA ligase and the rare-cleavage blunt end Srf I restriction enzyme (1). The method selects for PCR DNA fragment-vector ligations and maintains a high steady-state concentration of the digested vector DNA. After a brief incubation, the mixture is added to competent cells without further treatment.

The pCR-Script SK(+) plasmid is a derivative of the popular pBluescript® II SK(+) vector. It includes the lac promoter for gene expression, T3 and T7 RNA polymerase promoters, and an expansive multiple cloning region. And it allows for blue/white color selection, single-stranded rescue and rapid DNA sequencing.

The pCR-Script cloning kit is provided complete with predigested vector, enzymes and competent cells. Please call Stratagene for more information and the distributor nearest you.

*The polymerase chain reaction (PCR) process is covered by patents in the United States owned by Hoffmann-La Roche. Use of the PCR process requires a license.
With FLAG™ Biosystem, The Only Surprise Is How Well It Works.

IBI Presents a Proven Technology for High-Yield Expression, Detection and Purification of Recombinant Proteins in E. coli.

We've drawn on thousands of hours of research to assemble a highly reliable kit for high-yield purification of biologically active proteins.

The novel 8-amino-acid FLAG marker peptide is fused with virtually any protein for expression and secretion by the pFLAG-1 vector. The FLAG fusion protein is rapidly purified with the Anti-FLAG™ M1 affinity column.

A Universal Marker for fast and efficient purification of any protein fused to the FLAG peptide.

High Yield due to the efficient expression and secretion of FLAG fusion proteins by the pFLAG-1 expression vector, and the fact that the small FLAG peptide does not affect biological activity.

Rapid Purification of a biologically active protein from a crude cell lysate in minutes with the anti-FLAG M1 affinity gel.

Recovery of Biologically Active Proteins as a result of mild conditions during affinity purification.

Efficient Detection because the FLAG peptide occurs on the protein surface for easy detection with the Anti-FLAG M1 monoclonal antibody.

Get Everything You Need to Flag a Protein Down. Order your complete FLAG Biosystem today (Cat. No. IB 13000) from your VWR rep, or call IBI toll-free for a detailed six-page technical brochure: 1-800-243-2555.

Kit includes: pFLAG-1 expression vector, Anti-FLAG M1 monoclonal antibody, Anti-FLAG M1 affinity gel, enterokinase, enterokinase buffer, pFLAG-1-BAP control vector, chromatography column, and technical manual.

*Bacterial Alkaline Phosphatase

© 1993 Eastman Kodak Company FLAG and Anti-FLAG are trademarks of Immunex Corporation
Certify Your LSC Results.

Tri-Carb: The Only LSC Capable Of Certifying Its Own Performance.

All LSC's have some means of calibration, but only Packard Tri-Carbs actually certify their own performance. Tri-Carbs warn you of potential problems, such as changes in background or component aging, long before they can affect your results. Only with a Tri-Carb can you be sure you have correct performance every time you use it - and that you're in-line with today's GLP standards.

The fully integrated computer control and Instrument Performance Assessment (IPA) features form the basis of this unique self-testing capability. IPA monitors efficiency, background, sensitivity, and repeatability for 3H and 14C - automatically or on demand. The integrated computer stores the 100 most recent values for each of these critical parameters for immediate recall and output. There's no need to setup special procedures, or to labor through stacks of data. It's as easy as pressing a single key. Now you can certify your LSC performance and validate your experimental results ... anytime!

It takes a lot of confidence to test yourself and show the results to everyone. It takes a Packard Tri-Carb to have the performance worth showing.

Packard Tri-Carb ... Certified TR-LSC Performance.
The lengthy inscription on this recently discovered monument from La Mojarra, Veracruz, Mexico, has made possible a breakthrough in the decipherment of epi-Olmc writing. Signs of precisely determined meaning or pronunciation are in blue when securely interpreted in their context and in orange otherwise. Signs in red are tentatively interpreted and can be read intelligibly in context; those in yellow have approximate semantic interpretations. See page 1703 and the Perspective on page 1700. [Drawing: George Stuart]

REPORTS

Formation of Nanometer-Scale Grooves in Silicon with a Scanning Tunneling Microscope 1724
A. Kobayashi, F. Grey, R. S. Williams, M. Aono

Boundary Layer Profiles in Plasma Chemical Vapor Deposition 1726
D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Krueger

Cryptic Grain-Scale Heterogeneity of Oxygen Isotope Ratios in Metamorphic Magnette 1729
J. W. Valley and C. M. Graham

The $^{18}O/^{16}O$ Ratio of 2-Billion-Year-Old Seawater Inferred from Ancient Oceanic Crust 1733
C. Holmden and K. Muehlenbachs

Released Form of CNTF Receptor α Component as a Soluble Mediator of CNTF Responses 1736

Multiple Defects of Immune Cell Function in Mice With Disrupted Interferon-γ Genes 1739
D. K. Dalton, S. Pitts-Meek, S. Keshav, I. S. Figari, A. Bradley, T. A. Stewart

Immune Response in Mice That Lack the Interferon-γ Receptor 1742
S. Huang, W. Hendriks, A. Althage, S. Hemmi, H. Bluethmann, R. Kamiyo, J. Vilček, R. M. Zinkernagel, M. Aguet

Heterologous Protection Against Influenza by Injection of DNA Encoding a Viral Protein 1745

High Levels of HIV-1 in Plasma During All Stages of Infection Determined by Competitive PCR 1749
M. Piatak, Jr., M. S. Saag, L. C. Yang, S. J. Clark, J. C. Kappes, K.-C. Luk, B. H. Hahn, G. M. Shaw, J. D. Lifson

Requirement of the Carboxyl Terminus of a Bacterial Chemoreceptor for Its Targeted Proteolysis 1754
M. R. K. Alley, J. R. Maddock, L. Shapiro

Microbial Competition: Escherichia coli Mutants That Take Over Stationary Phase Cultures 1757
M. M. Zambrano, D. A. Siegele, M. Almirón, A. Torno, R. Kolter

An Osmosensing Signal Transduction Pathway in Yeast 1760
J. L. Brewster, T. de Valoir, N. D. Dwyer, E. Winter, M. C. Gustin

PAC-1: A Mitogen-Induced Nuclear Protein Tyrosine Phosphatase 1763
F. J. Rohan, P. Davis, C. A. Moskaluk, M. Kearns, H. Krutzsch, U. Siebenlist, K. Kelly

Requirement for Cdk2 in Cytostatic Factor–Mediated Metaphase II Arrest 1766
B. G. Gabrielli, L. M. Roy, J. L. Maller

Programmed Cell Death Induced by Ceramide 1769
L. M. Obeid, C. M. Linardic, L. A. Karolak, Y. A. Hannun

TECHNICAL COMMENTS

Ambiguities in Ab Initio Phasing 1771
T. O. Yeates and K. Y. J. Zhang; S. Subbiah

1729 Complex isotopic zoning in minerals

Indicates accompanying feature
New Eppendorf® Pipettes

Calibratable, Serviceable, and Autoclavable.

The new Eppendorf Pipettes combine quality with innovative features to deliver accurate and reliable results. Adjustable- and fixed-volume models cover the range from 0.5 μl to 2500 μl.

The adjustable-volume pipettes can be recalibrated to ensure optimum performance, particularly when pipetting viscous or nonaqueous liquids. A full range of spare parts is available for easy maintenance.

All new Eppendorf Pipettes are completely autoclavable at 121°C, and are constructed of durable, chemical- and UV-resistant materials to extend the life of the pipette.

A new product...and a new guarantee. Brinkmann Instruments is so confident about the quality of the new Eppendorf Pipettes that, for a limited time, we are offering a 30-day return privilege.

Eppendorf® is a registered trademark of Eppendorf-Netheler-Hinz GmbH.

Call 800-645-3050 for more information. In New York, call 516-334-7500, or write Brinkmann Instruments, Inc., One Cantiague Road, P.O. Box 1019, Westbury, NY 11590-0207. (In Canada: 800-263-8715 or 416-675-7911, 50 Galaxy Blvd., Rexdale, Ont. M9W 4Y5.)
Too much of your time is spent waiting. And waiting... Waiting for the information you need to complete your research project... Waiting for the latest publications to arrive... Waiting for expenditure reports to balance a grant budget.

Research Information Systems is dedicated to eliminating unnecessary waiting.

Look what our products can do for you:

Reference Manager – The leading bibliographic management software enables you to create, store, and quickly search a personalized database of references. Reference Manager also generates bibliographies in virtually any journal format.

Reference Update – Our popular current awareness service keeps you up to date by providing thousands of newly published references on a weekly diskette (also available electronically). You’ll find important information weeks or even months before it appears on other database services (and often before it appears in your library!).

Grant Accountant – An innovative software package that provides up-to-the-minute reports on the status of funding in your various grants and accounts. Now you can eliminate the wait for institutional reports.

For further information or to receive a complimentary demonstration version of our products, contact:

Research Information Systems
2355 Camino Vida Roble, Carlsbad, CA 92009-1572
(800) 722-1227 • (619) 438-5526 • Fax: (619) 438-5573

Circle No. 9 on Readers' Service Card

Experience Products from Research Information Systems.
And Experience Waitlessness.
Editorial

Expanding the Uses of Enzymes

At the recent AAAS meeting in Boston a symposium organized by Rex Montgomery of the University of Iowa provided a glimpse of interesting areas where microbiology, biochemistry, and chemistry can be employed in a multidisciplinary approach to practical uses of enzymes. One thrust was efforts to convert food-processing wastes into higher value products. Another was applications of a spectrum of enzymes derived from various microorganisms to obtain useful substances. This approach sometimes involved reactions catalyzed by enzymes in media other than water. The topics treated in the symposium have long-term as well as near-term relevance, for gradually the world will become more dependent on products formed from feed stocks originally derived from plants.

Improving the value of agricultural products and dealing effectively with food-processing wastes are of special interest in Iowa and are well supported there. The multidisciplinary group of faculty scientists active in biocatalysis and bioprocessing research at the University of Iowa and the part of the Biotechnology Byproducts Consortium there is one of the strongest such groups anywhere. An example of the many objects of their research is corn oil. This lipid is rich in the 18-carbon oleic acid. Through microbial oxidation of the double bond, oleic acid can be converted specifically into hydrostearic or ketostearic acid. These can be employed as lubricants, surfactants, and plasticizers as well as in other ways. A wide variety of yeasts, fungi, and bacteria that can catalyze the oxidative reactions have been identified.

Lard, which consists mainly of fatty acids combined with glycerin, is another object of research at the University of Iowa. Many Americans now avoid a high-fat diet. Thus, demand for hald has fallen to the point where it has become a food-processing orphan by-product. A single abattoir in Iowa produces 150 million pounds of lard a year. What to do with it? One alternative is to dissect it into its components, one of which is the 16-carbon, straight-chain palmitic acid. An enzyme present in a strain of yeast cleaves only palmitic acid from lard. Other yeasts have enzymes specific for freeing remaining 18-carbon acids.

Enzymes can facilitate specific reactions of carbohydrates with other chemicals with a minimum of undesirable by-products. Sucrose contains eight potentially reactive OH groups. Ordinary chemical synthesis tends to lead to uncontrolled, undesirable cross-linking. When the appropriate enzyme is employed, one site only on the sucrose reacts with certain chemicals to form monomers that can be isolated and subsequently polymerized to make interesting, highly hydrophilic polymers. A variant of this procedure involves enzyme-catalyzed trans-esterification of monosaccharides with vinyl acrylate, with the reaction conducted in pyridine. The resultant esters are isolated and subsequently polymerized. The hydrophilic polymers are lightly cross-linked to form materials capable of holding 50 times their weight of water. The polymer would be largely biodegradable.

In contrast to the earlier conventional view, some enzyme-catalyzed reactions proceed better in nonaqueous media than in water. Advantages of using other media include increased solubility of nonpolar substrates, shifts in equilibria to favor synthesis over hydrolysis, suppression of water-dependent side reactions, and elimination of microbial contamination. To perform well in polar media, most enzymes seem to require the presence of 1 to 2 percent of water in the reaction mixture. Reactivity and selectivity of the enzymes in nonaqueous media may be improved by recombinant DNA protein engineering, which has been successful in enhancing catalytic activity of enzymes in water.

Microbiologists have long known that many microorganisms synthesize a wide range of compounds, using carbohydrates as the sole energy and carbon sources. Biotechnology companies such as Genencor International are exploiting these synthetic capabilities to obtain specialty chemicals. One of these is indigo, which is used for dyeing denim. In ancient times, indigo was obtained from plants. During the last century, it was synthesized chemically from toxic chemicals, including aniline, formaldehyde, and sodium cyanide. Through bioengineering, a strain of Escherichia coli has been created that produces substantial amounts of tryptophan, converts it to indole, and finally to indigo. Indigo produced by E. coli will soon be on the market competing with dye synthesized by the older industrial method.

Philip H. Abelson

*Biotechnology Byproducts Consortium, University of Iowa College of Medicine, 202 MAB, Iowa City, IA 52242-1101.
The Oberrothenbach Catastrophe

The article "A grisly archive of key cancer data" by Patricia Kahn (News & Comment, 22 Jan., p. 448) describes a catastrophe in which a large population in the region around Oberrothenbach in the former East Germany was exposed to excessive amounts of uranium and hazardous compounds produced by uranium mining. The manner in which this catastrophe is described implies that a natural experiment is in progress and that some interesting data will be obtained. Some epidemiologists are cited as referring to "the world's biggest treasure chest of data on radiation and human health" and "[a] treasure trove of data" (italics added). No medical practitioner with expertise in cancer or other disease prevention is quoted.

"How do we help!?"—not "How do we observe!?"—should have been the major theme of the article. Had a similar catastrophe occurred in the United States, the focus would not have been on observation, but on the need for assistance to exposed individuals by every means available.

Lee W. Wattenberg
American Association for Cancer Research, University of Minnesota, Minneapolis, MN 55455

Kahn's excellent article about health statistics in the East German uranium industry sheds new light on an important and disturbing legacy of the East German nuclear effort. The same patterns of scientific censorship and callous disregard for miners' health occurred on the southern slopes of the Erzgebirge, in Czechoslovakia's famous uranium mines. A recently discovered secret agreement (23 November 1945) granted the Soviet Union exclusive rights to all uranium mined in Czechoslovakia and the mines around Joachimsthal were greatly expanded under Soviet supervision. Health records and vital statistics on the miners were coordinated by the state-run Health Institute of the Uranium Industry (HIUI) established in the mining town of Príbram in 1954 for this purpose. In 1960, Vladimir Reřicha, an epidemiologist at the HIUI, was asked to prepare an overview of the incidence of lung cancer among Czech miners; between 1960 and 1965 he and his staff compiled epidemiological evidence that 27,000 uranium miners at Joachimsthal and Horní Slavkov were dying from lung cancer at about five times the rate of coal miners and the male Czech population more generally, results that were in agreement with findings for U.S. miners at about this time (1).

Reřicha prepared an in-house paper detailing his findings for the HIUI in 1966 (2) and simultaneously sought to publish his results in a more conventional scientific journal. The report and its contents were classified by the State Security Police, however, and the ban was not lifted until the "velvet revolution" of 1989. As Reřicha recently recalled (3), Czech security authorities were apparently afraid that from uranium health statistics one could calculate either uranium production levels or the quality of uranium being mined, or both. The cynicism of such a ban was made apparent in the 1970s, when Reřicha was again refused permission to publish, despite the fact that the administrative chief responsible for Czechoslovakian uranium mining, Karel Boček, had defected to West Germany in 1970. With details of the nature and scope of Czech uranium mining no longer secret from the West, Czech authorities may have feared that revelation of the sacrifice of its miners for Soviet atomic power might not sit well with the Czech public.

Kahn notes that many East Germanuranium miners were forced laborers in the early years, but that coercion proved unnecessary, as food and work were in short supply and miners' wages were high. In Czechoslovakia, however, forced labor was an integral part of the uranium mining program for more than 15 years. The recently opened archives of the State Security Police show that the Czech government organized 17 forced labor camps at uranium mines. The number of political prisoners in the mines is recorded precisely in secret police archives, growing from 64 in 1946 (all Germans, presumably Nazis), to 5,500 in 1950 (all Czechs by this time), to a peak of 11,816 in 1953. All uranium mine political prisoners were released as part of a general amnesty granted in 1963; after this time, the only prisoners working in the mines were "ordinary" (that is, nonpolitical) criminals. Officials at the HIUI estimate (4) that, altogether, as many as 50,000 political prisoners may have worked in Czech uranium mines from the beginning of the camps in 1946 until the amnesty in 1963. Some of these prisoners continued working in the mines even after their release; civilian miners were paid very well—about ten times the average salary of physicians. Today, all Czech uranium miners are eligible for 60,000 kronen for health and hardship compensation; political prisoners became eligible for compensa-
Contamination of cDNA Sequences in Databases

We have evidence for heavy contamination of a large data set of human complementary DNA (cDNA) sequences in the nucleotide data libraries by sequences of an unknown prokaryote. We have retrieved from the databases 4888 putatively expressed human cDNA sequences that have been deposited recently from different human genome sequencing projects and have compared them [for a description of methods, see (1)] with the latest version of the SWISS-PROT protein database. The search showed that the largest of these collections of sequences [2366 entries in the European Molecular Biology Laboratory (EMBL) database as of 5 February], representing one set of cDNA clones derived from a T lymphoblastoid cell line, is heavily contaminated by prokaryotic sequences (Table 1).

Table 1.

<table>
<thead>
<tr>
<th>cDNA library</th>
<th>Total sequences</th>
<th>Eukaryotic-like</th>
<th>Prokaryotic-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>T lymphoblastoid cell line</td>
<td>2366</td>
<td>120</td>
<td>278</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>356</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Cardiac muscle</td>
<td>291</td>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>Fetal and adult brain</td>
<td>1875</td>
<td>386</td>
<td>1</td>
</tr>
</tbody>
</table>

The contamination is a major one involving more than 700 kilobases of human expressed sequence tags, of which at least 83 kilobases are of nonhuman origin. The contaminated sequences will remain in the data-base for the next few months, characterized as "human partial cDNAs." We propose that all sequences from the contaminated cDNA library except those that are clearly of human origin be moved from the "primates" section of the databases to the "unannotated" section.

References

References and Notes

1. The human cDNA sequences used for our search were retrieved from EMBL database release 33 and the EMBL daily updates until 5 February 1993. Sequences submitted by the Genexpress cDNA Program were selected by searching for the string GENEXPRESS in the author line (3013 entries from three cDNA libraries), and sequences from the United Kingdom/Molecular Research Council Human Genome Mapping Project were selected by searching for HSAAA as the first five characters of the entry name (1875 entries from two cDNA libraries). We used the program.
BLASTX (2) to compare these sequences (translated in six frames) with the protein sequences of the SWISS-PROT database release 24 on a silicon graphics cluster. The results were processed by taking the five best "hits" of each BLASTX output and filtering them to remove those with Poisson probability (Pval) greater than 10^-2. A sequence showing the lowest Pval with a eukaryotic protein was considered to be "eukaryotic-like," while a sequence with a top-matching prokaryotic protein was designated "prokaryotic-like." The complete results of this search are available by electronic mail.

Biotechnology in Japan

June Kinoshita, in her article "Is Japan a boon or a burden to U.S. industry's leadership?" (News, 29 Jan., p. 596), recounts a survey of Japanese pharmaceutical biotechnology that provides in some respects an update of a survey performed by the U.S. Food and Drug Administration (FDA) in 1988 (1).

Kinoshita cites a number of significant obstacles that prevent Japan from being a major competitor, but she does not mention that the regulatory climate in Japan has been, at best, equivocal toward new biotechnology. Japan has adopted a technique-based regulatory approach—with special requirements for products derived from recombinant DNA, and several areas have been significantly impeded. For example, despite a medical and scientific infrastructure that could support clinical trials of human gene therapy, no Japanese group is close to moving into the clinic, and no Japanese company has been created with gene therapy as its goal. By contrast, gene therapy trials are already under way in the United States, Italy, France, the Netherlands, and China, with almost 100 patients having been treated and the numbers rising exponentially (2).

Japan's attitude toward the new biotechnology is similarly reflected in agricultural biotechnology. Only a single field trial of a recombinant DNA-manipulated plant has been carried out in Japan (and none of microorganisms), and Japanese research and development in this area is behind what one would expect. The Japanese government has provided little encouragement in the form of clear, predictable, risk-based regulation to those contemplating field trials. Moreover, the Japanese Ministry of Health and Welfare has imposed a strict regulatory regime specific to foods and food additives manufactured with recombinant DNA techniques (3).

Henry I. Miller
Director, Office of Biotechnology,
Food and Drug Administration,
Rockville, MD 20857

References and Notes

Gene Therapy Approval Process

I would like to comment on several statements in the article "Harkin seeks compassionate use of unproven treatments" (News & Comment, 11 Dec., p. 1728) by Larry Thompson regarding a request by the San Diego Regional Cancer Center (SDRCC) that the National Institutes of Health (NIH) adopt a policy to expedite the review and approval of gene therapy protocols in cases involving terminally ill patients.

The central issue, all but lost in the article, is that NIH did not at the time have in place a policy to review and act on requests by terminally ill patients seeking the benefits of new gene therapy methods (1). The request was not a means of avoiding peer review but an attempt to streamline an existing process that in some cases literally exceeded the life expectancy of the patients seeking help.
The SDRCC request before the Recombinant DNA Advisory Committee (RAC) on 4 November dealt solely with this issue. A completely different SDRCC gene therapy protocol reviewed by the RAC year earlier was not under review at the recent RAC meeting, nor is it the basis of the gene therapy protocol under consideration for the patient who is discussed in the article.

Ivor Royston
President and Scientific Director,
San Diego Regional Cancer Center, San Diego, CA 92121

Notes

1. On 14 January, the RAC voted 9 to 3, with 1 abstention, to adopt an interim policy allowing internal NIH review and approval of genetic treatments for dying patients when the RAC cannot meet quickly enough to evaluate them (L. Thompson, News & Comment, 22 Jan., p. 452).

The Cost of Regulation

I was pleased to see that Philip H. Abelson’s editorial “Regulatory costs” (8 Jan., p. 159) made use in the first paragraph of my data on regulatory cost (1). I agree with the points Abelson makes and hope that his message—that the cost of regulation has mushroomed—receives broad acceptance.

Thomas D. Hopkins
Department of Economics,
Rochester Institute of Technology,
Rochester, NY 14623-0887

References

From the Vatican

In Constanza Holden’s article “Scientists’ campaign to save Earth” (News & Comment, 27 Nov., p. 1433), Henry Kendall, chairman of the Union of Concerned Scientists (UCS), is said to have claimed that the Pontifical Academy of Sciences has adhered to the USC’s campaign to save the Earth. As president of the Pontifical Academy of Sciences, I would like to say that this statement is not true. Any Pontifical academician who may have signed the UCS “Warning to humanity” has done so only in his own name.

G. B. Marini-Bettolo
Pontificia Academia Scientiarum,
Casina Pio IV,
00120 Vatican City
1993 Awards
For
Research and Studies of the Repercussions
of the Iraqi Invasion of Kuwait

Kuwait Foundation for the Advancement of Sciences has institutionalized a prize for research and studies of the repercussion of the Iraqi invasion of Kuwait, to recognize distinguished accomplishments in the Arts, Humanities, and Sciences. The Foundation in establishing this prize is fulfilling its objectives in encouraging scientists and researchers to participate in studies of the effects and repercussions of the Iraqi invasion of Kuwait and its aftermath.

The prizes are awarded annually in the following fields:

A. Environmental Research
B. Historical Research
C. Psychological and Social Research
D. Economical Research
E. Story and Novel

Each prize consists of a cash sum of K.D. 10,000 (approx. U.S. $35,000) and a certificate of recognition.

Conditions of awarding the prize:

1. Nominee or researcher should be a specialist in the field of the prize.
2. The scientific research submitted must be innovative, distinctive in its ideas, and of value to the fields of prizes.
3. The candidate should not have been awarded a prize for the submitted work by any other institution.
4. The scientific research submitted must have been published during the year prior to the prize year.
5. KFAS announces the prizes and the conditions of the prizes annually.
6. Nominations for these prizes are accepted from academic and scientific centres, and from individuals worldwide.
7. The results of KFAS findings regarding the selection of winners are final, and the works submitted for nominations will not be returned regardless of the outcome.
8. Nominations and five copies of the scientific research, and any inquiry concerning the prize, should be addressed before October 31, 1993 to:

Director General
Kuwait Foundation for the Advancement of Sciences
P.O. Box: 25263—Safat
13113—Kuwait
Tel: (965) 2429780
Fax: (965) 2415365
Telex: 44160 KEFAS

400 Years of Nitric Oxide Research!

NITRIC OXIDE
PHARMACOLOGY
DRUG DEVELOPMENT
MOLECULAR BIOLOGY
CLINICAL DEVELOPMENTS
PHYSIOLOGY BIOCHEMISTRY
PATHOPHYSIOLOGY GENOTOXICITY

"Nitric Oxide in Health and Disease".
A two and one-half day symposium sponsored by The Environmental and Occupational Health Sciences Institute (EOHSI) and The Cancer Institute of New Jersey at the University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, June 21-24, 1993. Information and abstract forms: Vicki Leyton, EOHSI, 881 Frelinghuysen Rd, Piscataway, NJ 08854 (908) 932-0202, FAX (908) 932-0131.

Working with Congress

A practical guide for scientists and engineers

William G. Wells, Jr.

This new guide will help scientists and engineers gain an understanding of how Congress operates and how to communicate effectively with its members and staff.

A concise, easy-to-read manual that is must reading—especially during this transition period!

Available now for only $12.95
(AAAS members, $10.36)

Mail order to AAAS Books, PO Box 753
Department A72, Waldorf, MD 20604

Add $4 shipping per order. If you prefer, order by phone (VISA/MasterCard only) 301-645-5643 (9am-4pm ET) and ask for AAAS or Fax 301-543-0159.
Join Leading Scientists To Exchange Valuable Insights

The Molecular Basis For Gene Expression
A Seminar Series Sponsored By Applied Biosystems.

Thousands of genes have been isolated and analyzed in the last few years. Now the long-term challenge is to understand what, why, when, where and how these genes are expressed. These free seminars are a timely way for both the participants and Applied Biosystems to better anticipate the critical technologies and methods needed.

Respected scientists will present technical reviews and visionary opinions in several topic areas. Space is limited, call today.

Topics:
- Molecular Mechanisms of Gene Expression
- Strategies for the Intervention of Gene Expression
- Technologies for Expressing and Characterizing Proteins
- Quantitative RNA-PCR Technology
- Accurate Cloning and Expression of PCR Products
- Abnormal mRNA Expression Levels and Human Disease

Each seminar will offer six speakers. Different guest speakers will appear in each city; please call for current information on the speakers in your area.

Guest Speakers Include:
John Abelson, California Institute of Technology
Matthew J. Fenton, Boston University Medical Center
Suzanne Fuqua, University of Texas Health Science Center
Nathaniel Heintz, Howard Hughes Medical Institute, Rockefeller University
Leroy Hood, University of Washington
Tony Hunter, Salk Institute
Vincent J. Kidd, St. Jude Children's Research Hospital
Daniel R. Marshak, Cold Spring Harbor Laboratory
W. Edward Mercer, Thomas Jefferson University
Joseph R. Nevins, Howard Hughes Medical Institute, Duke University
Carl Parker, California Institute of Technology
Dom Spinella, The Immune Response Corporation
Kazunari Taira, Agency of Industrial Science and Technology-MITI, Japan
Gerald Zon, Lynx Therapeutics

Applied Biosystems speakers appearing at all locations:
Stan Rose
Ken Wilson
Lincoln McBride

Seminar Dates:
Orange County, CA Monday, May 3
Seattle, WA Tuesday, May 4
Chicago, IL Thursday, May 6
Research Triangle, NC Friday, May 7
Washington, DC Monday, May 10
Philadelphia, PA Tuesday, May 11
New Jersey Wednesday, May 12
Boston, MA Thursday, May 13

© 1993 Applied Biosystems, Inc.
The Densitometer For All Reasons

Densitometry for today's biologist — Get more out of your data.

You need to get more out of your data today than ever before. That's why we designed The Discovery Series™. With it, you can scan gels, films, photographs, DNA sequencing films, blots, petri and microtitre plates. If it can be scanned, our software will analyze it.

Quantitate, read sequence, match patterns, analyze 2-D gels, compare images — Get more out of your data.

Our four software packages give you the tools. Quantity One® quantitates all types of images. DNA Code® reads DNA sequence. PDQUEST™ is the world standard for 2-D gel analysis, and our new RFLPPrint™ sorts 1-D lanes based on similarity.

The hardware matches the software — Get more out of your densitometer.

The Discovery Series™ comes with Sun SPARCStation computers and the DeskTop™ scanning densitometer. Speed, performance and ease of use are built in. Any size images are scanned at 21μm resolution — fast. Then, results are just five minutes away.

Upgrades and Support. — Get more from pdi.

The Discovery Series™ always comes with free software upgrades and support during year one. You can always add more software. Call us today at 800-777-6834 for more information. We'll give you more.

Spacecraft Neutrino. Christine Sutton. Cambridge University Press, New York, 1992. xiv, 244 pp., illus. $44.95; paper, $24.95.

Virtual Reality. Through the New Looking Glass. Ken Pimentel and Kevin Teixeira. Westcress (TAV), Blue Ridge Summit, PA, 1993. xvii, 301 pp., illus. + plates. $32.95; paper, $22.95.

'Only a few meteorites have caused damage to dwellings. This photograph taken by Phil Dom- browski shows a recent occurrence: Wethers- field, Connecticut, November 8, 1982.' [From The Cambridge Guide to Astronomical Discoveries]