Stratagene's pCR-Script™ cloning kit is designed to efficiently clone PCR* products without requiring special primers or post-PCR treatment. PCR products are simply incubated with the predigested plasmid pCR-Script SK(+) DNA, rATP, T4 DNA ligase and the rare-cleavage blunt end Srf I restriction enzyme (1). The method selects for PCR DNA fragment-vector ligations and maintains a high steady-state concentration of the digested vector DNA. After a brief incubation, the mixture is added to competent cells without further treatment.

The pCR-Script SK(+) plasmid is a derivative of the popular pBluescript® II SK(+) vector. It includes the lac promoter for gene expression, T3 and T7 RNA polymerase promoters, and an expansive multiple cloning region. And it allows for blue/white color selection, single-stranded rescue and rapid DNA sequencing.

The pCR-Script cloning kit is provided complete with predigested vector, enzymes and competent cells. Please call Stratagene for more information and the distributor nearest you.

Catalog No. 211190

*The polymerase chain reaction (PCR) process is covered by patents in the United States owned by Hoffmann-La Roche. Use of the PCR process requires a license.
TopCount Combines the Power of Radioisotopic and Luminescence Technology into One Microplate System

TopCount Microplate Scintillation and Luminescence Counter

Beta, gamma or luminescence labeling? Why have three instruments when TopCount can count all three labels? It’s the only system that measures liquid scintillation, solid scintillation and luminescent samples in microplates.

The Convenience of Microplates with the Performance of Scintillation Counting

TopCount can measure radioisotopes in 96- and 24-well microplates, up to 12 wells simultaneously. Reflective optics and proprietary counting technology prevents optical crosstalk and maintains high counting efficiency. TopCount is the first microplate system to offer true LSC performance, including dual label DPM with external standardization.

Step into the Future with Luminescence

The same technology that gives TopCount unsurpassed performance in microplate LSC brings low backgrounds and fast photon counting to luminescence measurements. Now you can count glow and enhanced flash luminescence with a dynamic range of 10^6. In addition, exclusive features such as dual detectors, a plate stacker and a barcode reader provide you with a combination unmatched by any luminometer or LSC.

A Solution for Every Application

TopCount will revolutionize the way you run your assays. You can harvest 96 samples at once, and count them without ever touching a filter. You can prepare and analyze samples in the same plate for in-plate binding and adherent cell assays. And for liquid samples, there is even a better way — you can count them dry, without cocktail, in solid scintillator plates.

For a solution to your microplate application, just call Packard and ask about TopCount.
Separate, quantify, or sequence carbohydrates in one day with Glyko FACE® technology

If you're working with DNA or protein, you're ready to work with carbohydrates

Glyko's FACE (Fluorophore Assisted Carbohydrate Electrophoresis) technology, makes it possible for you to work with and analyze complex carbohydrates using the same technique you already use every day in your laboratory: polyacrylamide gel electrophoresis.

Now, in less than one day, you can perform profiling, composition, or sequencing experiments such as the ones shown here, using FACE chemistry kits.

Color-coded FACE kits make carbohydrate analysis easy and reliable

FACE kits are color-coded and are designed to provide a complete approach to carbohydrate analysis...starting with the enzymatic or chemical release from the glycoconjugate to the separation, isolation, or sequencing of oligosaccharides.

Everything you need is included: enzymes or release chemicals, fluorescent-labeling reagents, electrophoresis standards, controls, running buffers, precast polyacrylamide gels, and complete protocols.

Sequence your oligosaccharides with Glyko recombinant glycosidases

Glyko offers the most complete line of recombinant glycosidases available, each cloned to be free of other glycosidases, protease activity, and carbohydrates:

- PNGase F, releases Asn-linked oligosaccharides
- NANAse I, releases α2-3 N-acetylnεuraminic acid
- NANAse II, releases α2-3,6 N-acetylnεuraminic acid
- NANAse III, releases α2-3,6,8 N-acetylnεuraminic acid
- Neuraminic Acid Linkage Analysis Kit contains NANAse I, II, and III
- HEXase I, releases β1-2,4,6 N-acetylglucosamine
- MANase I, releases α2-3,6 mannos
- FUCase I, releases α1-6 fucose

We want to be your carbohydrate research partner

When your research requires a unique application of FACE technology, Glyko scientists will work with you to develop a custom FACE kit.

If you have only an occasional need for carbohydrate analysis, or lack the personnel to perform the analyses you require, our scientists can do it for you.

For more information, please call Glyko, Inc. toll free at 1 800 33 GLYKO (334-5956) or fax us at 1 415 382 7889.

©1993 Glyko, Inc. FACE is a registered trademark of Glyko, Inc. 81 Digital Drive, Nantucket, CA 94559

Circle No. 11 on Readers' Service Card
Sequence carbohydrates in one day with Glyko Recombinant Glycosidases

At last. Fast, simple, and accurate oligosaccharide analysis

No matter what separation technique you employ, Glyko recombinant glycosidases now make it possible for you to sequence oligosaccharides right in your own lab.

The oligosaccharide shown above (lane 2) for example, was sequenced in one day by simultaneous digestion using a series of Glyko enzyme mixtures contained in the FACE® (Fluorophore Assisted Carbohydrate Electrophoresis) N-Linked Oligosaccharide Sequencing Kit.

Glyko scientists continue to discover and clone new glycosidases

The most complete selection of recombinant glycosidases available anywhere:

- PNGase F releases Asn-linked oligosaccharides
- Endo H releases Asn-linked high mannose and hybrid-type oligosaccharides
- O-Glycosidase DS releases Ser/Thr linked Gal-GalNAc
- NANase I releases α2-3 N-acetylneuraminic acid
- NANase II releases α2-3,6 N-acetylneuraminic acid
- NANase III releases α2-3,6,8 N-acetylneuraminic acid
- Neuraminic Acid Linkage Analysis Kit contains NANase I, II, and III
- HEXase I releases β1-2,3,4,6 N-acetylglucosamine
- MANase I releases α1-2,3,6 mannose
- FUCase I releases α1-6 fucose

Better enzymes because they’re recombinant, extensively characterized, and highly purified

Unlike non-recombinant enzymes isolated from bacteria, Glyko’s cloned glycosidases are guaranteed to be free of contaminating glycosidases, protease activity, and carbohydrates.

The activity of each glycosidase is extensively characterized using actual oligosaccharide standards.

Stringent quality control and high specific activity assure predictable reaction times and consistent results.

And, using the universal buffer provided, Glyko recombinant glycosidases can be used alone or in combination for rapid sequential enzymatic digestion.

Putting carbohydrate analysis within everyone’s reach

Recombinant glycosidases are a critical part of the FACE technology developed by Glyko to simplify the analysis of carbohydrates.

Other Glyko products include FACE Glycoconjugate Analysis Kits, the FACE Imager, and FACE Analytical Software.

Glyko also offers custom carbohydrate or glycoconjugate analysis, custom kit production, and FACE training programs.

Contact us, today

To order Glyko recombinant glycosidases, or for more information on these and other FACE products, please call Glyko, Inc., toll free at 1 800 33 GLYKO (334 5956), fax 1 415 382 7889, or write to us at 81 Digital Drive, Novato, California 94949.

Circle No. 12 on Readers’ Service Card
Emission of gas clouds in the active galaxy NGC 1068 observed by the Hubble Space Telescope. The gas is ionized by radiation from the galaxy nucleus, which is thought to be encircled by a dusty torus that allows the radiation to escape only within the conical region indicated on the image. Depending on the orientation of the torus relative to the disk of the galaxy it inhabits, this model can explain many types of galactic activity. See the Perspective on page 40. [Image: National Aeronautics and Space Administration]

REPORTS

Patterned Condensation Figures as Optical Diffraction Gratings
A. Kumar and G. M. Whitesides

Fluorescent X-ray Interference from a Protein Monolayer
Y. C. Sasaki, Y. Suzuki, T. Ishibashi

New Light on the Heart of Darkness of the Solar Chromosphere
S. K. Solanki, W. Livingston, T. Ayres

Void Structure in Colloidal Dispersions
K. Ito, H. Yoshida, N. Ise

Synthesis and Characterization of Molybdenum Carbide Clusters Mo,Cn (n = 1 to 4)

Do Hydrofluorocarbons Destroy Stratospheric Ozone?

Target of the Transcriptional Activation Function of Phage λ el Protein
M. Li, H. Moyle, M. M. Suskind

Catalytic Activity of an RNA Domain Derived from the U6-U4 RNA Complex
J.-H. Yang, R. Cedergren, B. Nadal-Ginard

Mitotic Repression of RNA Polymerase III Transcription in Vitro Mediated by Phosphorylation of a TFIIIB Component
J. M. Gottesfeld, V. J. Wolf, T. Dang, D. J. Forbes, P. Hartl

Location of cAMP-Dependent Protein
B. S. Skållberg, K. Taskén, V. Hansson, H. S. Huitfeldt, T. Jahnson, T. Lea

A Transforming Growth Factor β Type I Receptor That Signals to Activate Gene Expression

Association of Transformation Factor APRF and Protein Kinase Jak1 with the Interleukin-6 Signal Transducer gp130

Association and Activation of Jak-Tyk Kinases by CNTF-LIF-OSM-IL-6 β Receptor Components

Targeting of Gαo to the Golgi by Alternative Spliced Carboxyl-Terminal Region of J- P. Montmayeur and G. Borrelli

The Met Proto-Oncogene Mesenchymal to Epithelial Cell Conversion

TECHNICAL COMMENTS

Theory, Experiment, and the H + D2 Reaction
M. J. D'Mello, D. E. Manolopoulos, R. E. Wyatt; D. W. Chandler
DNA SEQUENCING OF RETROVIRAL LTR USING PCR PRODUCTS AMPLIFIED FROM NIH 3T3 FIBROBLAST CELL LINE ON THE GENEAMP PCR SYSTEM 9600. COURTESY OF PIA MARIA CHALLITA, CHILDREN'S HOSPITAL, LOS ANGELES, CALIFORNIA.

Turn PCR Performance Into Sequencing Power.

Rapid PCR cycles. Oil-free, low-volume reaction mixes. Demonstrated reproducibility. Only the GeneAmp® PCR System 9600 gives you the throughput, reliability and convenience you need to achieve the highest level of productivity in cycle sequencing. Only the GeneAmp PCR System 9600 delivers the high PCR performance demanded by leading sequencing labs.

To ensure consistent sequencing results, the GeneAmp PCR System 9600 integrates innovative instrument design with advanced MicroAmp® Reaction Tubes, the Perkin-Elmer AmpliTaq® Cycle Sequencing Kit and proven protocols. All backed by the expertise, experience and commitment of Perkin-Elmer’s worldwide technical support organization. A commitment reaffirmed every day, sample to sample, by our PCR Performance Guarantee.

Free technical notes. To receive the latest information on PCR and cycle sequencing, contact your local Perkin-Elmer sales representative or call 1-800-762-4000. To order, call 1-800-762-4002. Outside the U.S., contact your Perkin-Elmer sales representative.
FINALLY, an Electroporator

WITH ALL

THE FEATURES YOU NEED

And None you DON'T.

Too many electroporation devices come with a long list of fancy features and a shocking price. Now, the new Electroporator II from Invitrogen gives you all the versatile electroporation capability you need without the high cost.

You've Got the Power.

The easy-to-use Electroporator II uses standard electrophoresis power supplies, so you don't pay for an extra power supply you don't need. But the compact, durable Electroporator II still delivers all the power you do need, including pulse lengths from 1 to 25 ms.

Bacteria, Yeast and Mammalian Cells Welcome.

With the Electroporator II, it's easy to optimize field strength and pulse length for maximum transformation efficiency, no matter what cell type. And because it works with 0.1, 0.2 and 0.4 cm cuvettes, electroporation of bacteria, yeast or mammalian cells is no problem.

Get the electroporation device that delivers everything you need without the sticker shock.

Call Invitrogen today to order the Electroporator II (catalog no. S1670-01).

(800) 955-6288 or Fax (619) 597-6201

3985 B Sorrento Valley Blvd., San Diego, CA 92121
The New Year begins auspiciously for astronomers. The shuttle mission to repair the Hubble Space Telescope (HST) could not have gone better, and that success is as valuable to NASA as a whole as it is to the astronomical community in particular. It will be some weeks before tests of the revamped HST are complete, but there have been no problems so far, and the instrument should at last offer the celestial view its designers originally intended.

The omens are good in optical astronomy generally: the multi-mirror Keck Telescope in Hawaii is coming along well, and innovative designs for large ground-based optical telescopes are emerging from Japan, Europe, and the United States. But perhaps the most significant expansion of astronomers' view of the heavens has come, over the last two decades or so, from observations at wavelengths shorter than optical. Improvements in detector technology, along with the routine availability of satellite launches, have produced maps of the sky in ultraviolet radiation, x-rays, and gamma rays. ROSAT, the German-British-U.S. x-ray astronomy satellite, and the Compton Gamma Ray Observatory, a U.S. project comparable to HST in size, complexity, and cost, are less well known to the public but have been undoubtedly scientific successes. The Extreme Ultraviolet Explorer, whose history and first results are described by Bowyer in this special issue of Science on high-energy astrophysics, has filled in the last gap in the astronomical electromagnetic spectrum, and in the x-ray waveband there is plenty more to come (see the Perspective by Tanaka).

This recitation of successes is not meant to discount the day-to-day problems of astronomers, who like all researchers these days have to scrump and save. A perennial complaint is the difficulty of obtaining enough money to maintain observatories and ground-support facilities once the telescope is built or the satellite launched, but this is not a difficulty unique to astronomy or even to science; it reflects, on a national scale, the fact that it is easier to borrow $25,000 from the bank for a new car than it is to get $1,000 to fix your old one.

In these straitened times, nevertheless, astronomers have an enviable number of new projects in hand, and when most scientists feel increasingly obliged to play up their work for its social relevance and public relations, it is worth remarking that astronomy remains, in these pragmatic terms, a singularly useless endeavor; it saves no lives and generates no improved mousetraps. What it possesses, however, is an enduring fascination. This derives not from the fact that astronomers tackle fundamental problems—they can make no special claim to fundamentalology, against the similar claims of particle physicists or human geneticists—but from simple awe. High-energy astrophysics offers physics on the grand scale: neutron stars and black holes, million-degree plasmas, and tera gauss magnetic fields.

Early observational efforts in high-energy astrophysics yielded a sparse selection of objects, often with no obvious counterpart in the visual sky, but as the field has matured its results have been more fully integrated into the overall astronomical picture. Bignami's Perspective describing the identification of the mysterious gamma ray source Geminga as an unusual pulsar rests on detective work at many wavelengths that would have been technically impossible less than a decade ago. The Perspectives by Bailyn, discussing hot stars in the centers of old globular clusters, and by Kinney, on the nature of active galaxies, also show how observational evidence across the electromagnetic spectrum combines to give a picture greater than the sum of its parts. A corollary is that sources detected exclusively in one energy band are hard to fathom: as Hartmann explains, short bursts of gamma rays are seen randomly and frequently across the whole sky, but still have not been linked to any known phenomenon at other wavelength, and remain mysterious.

The expanding horizons of astronomy constantly bring in new physics. Rogers tells how recent progress in understanding the opacity of highly ionized atoms has resolved some old problems in the interior structure of stars, while Taubes' news story on neutrino "telese" describes how astronomers may be able to see directly into the cores of stars and supernovae. Now that the extreme ultraviolet waveband has been explored, and if an explanation for the gamma ray bursts is found, it is possible that the repertoire of cosmic phenomena across the whole electromagnetic spectrum will soon be essentially complete—but then neutrino astronomy is just beginning, cosmic rays remain poorly understood, and there is dark matter to be found. The edge of the universe is still a long way off.

David Lindley
STATISTICA/W™ (for Windows) Complete Statistical System with thousands of on-screen customizable, presentation-quality graphs fully integrated with all procedures: Complete Windows 3.1 support; DDE, OLE, TT-fonts, multiple toolbars, right mouse button support; Unlimited numbers of data-, results-, and graph-windows; Inter-window integration: data, results, and graphs can be treated as objects and converted into one another in a number of ways. The largest selection of statistics and graphs in a single system; comprehensive implementations of: Exploratory techniques; multiway tables with banners (presentation-quality reports); nonparametrics; distribution fitting; multiple regression; general nonlinear estimation; stepwise logit/probit; general ANCOVA/MANOVA; stepwise discriminant analysis; log-linear analysis; factor analysis; cluster analysis; multidimensional scaling; canonical correlation; item analysis/reliability; survival analysis; time series modeling; forecasting; effects analysis; quality control; process analysis; experimental design (with Taguchi); and much more. Manuals with comprehensive introductions to each procedure and examples. HyperText-based Stats Advisor expert system. Extensive data management facilities (spreadsheet with long formulas, block operations, advanced clipboard support, DDE hot links, relational merge, data verification, powerful programming language) Batch command language and macros also supported. “turn-key system” options. All output displayed in Scrollsheets™ (dynamic, customizable, presentation-quality tables with toolbars, pop-up windows, and instant 2D, 3D and multiple graphs). Extremely large analysis designs (e.g., correlation matrices up to 32,000x32,000, unlimited ANOVA designs). Megafile Manager with up to 32,000 variables (8 Mb) per record. Unlimited size of files; extended (“quadrule”) precision; unmatched speed. Exchanges data and graphs with other applications via DDE or an extensive selection of file import/export facilities. Hundreds of types of graphs, including categorized multiple 2D and 3D graphs, matrix plots, icons, and unique multivariate (e.g., 4D) graphs. Facilities to custom design new graphs and add them permanently to menu. On-screen graph customization with advanced drawing tools, interactive stretching and resizing of complex objects, interactive embedding of graphs and artwork, special effects, icons, maps, multi-graphics management, page layout control for slides and printouts; unmatched speed of graph redraw. Interactive rotation, perspective and cross-sections of all 3D and 4D graphs. Extensive selection of tools for graphical exploration of data: fitting, smoothing, overlaying, spectral planes, projections, layered compressions, marked subsets. Price $995.

Quick STATISTICA/W™ (for Windows) A comprehensive selection of basic statistics and the full graphics capabilities of STATISTICA/W. Price $495.

STATISTICA/DOs™ (for DOS) A STATISTICA/W-compatible data analysis system. Price $795.

Quick STATISTICA/DOs™ (for DOS) A subset of STATISTICA/DOs statistics and graphics. Price $295.

Domestic sh/h $10 per product; 14-day money back guarantee.

Circle No. 23 on Readers' Service Card

StatSoft

2325 E. 13th St. • Tulsa, OK 74104 • (918) 583-4149
Fax: (918) 583-4376

StatSoft, STATISTICA/W, Quick STATISTICA/W, STATISTICA/DOs, Quick STATISTICA/DOs, and Scrollsheet are trademarks of StatSoft, Inc.

STATISTICA/Mac™ (for Macintosh) A STATISTICA/W-compatible, comprehensive data analysis and graphics system designed for the Macintosh. Large selection of statistical methods fully integrated with presentation-quality graphics (incl. EDA, multiplots, a wide selection of interactively rotatable 3D graphs, MacDraw-style tools) Unlimited size of files Full support for System 7, incl. “Publish and Subscribe”. Price $895.

Quick STATISTICA/Mac™ (for Macintosh) A subset of STATISTICA/Mac: a comprehensive selection of basic statistics and the full graphics capabilities of STATISTICA/Mac. Price $395.
Frog Endangernent

In their letter "Tropical poison frogs," Charles W. Myers and John W. Daly (19 Nov., p. 1193), who are undoubtedly experts in the biology of dendrobatid frogs, provide incorrect information about the meaning of the frogs' listing under the Convention on International Trade in Endangered Species (CITES).

All dendrobatid frogs of the genera Dendrobates and Phyllobates are listed in CITES Appendix II, which does not equate to "threatened" status, nor does it require evidence of "endangerment." The listing, designed to regulate trade in vulnerable species, does require that an exporting country first make a judgment that trade will not be detrimental to the species before issuing an export permit. If range countries are refusing to issue such permits, it may be because they have made determinations that trade from their populations is not sustainable, or because they have other, stricter domestic measures separate from CITES which ban such trade, a sovereign right of every nation with or without international treaties.

Perhaps we in the regulatory agencies need to do a better job in working with the scientific community to explain what trade is regulated internationally, and why. Cooperative efforts between scientific researchers and conservationists are crucial if we are to conserve tropical biodiversity and the genetic bank it encompasses.

Marshall P. Jones
Chief
Office of CITES Management Authority,
Fish and Wildlife Service,
U.S. Department of the Interior,
Washington, DC 20240

Smallpox Virus Stocks

Having thus far stayed out of the debate about smallpox destruction, I am moved to comment on the thoughtful Policy Forums published recently in Science (19 Nov., pp. 1223 and 1225) where two sets of eminent virologists (B. W. J. Mahy et al. and W. K. Joklik et al.) come to such opposite conclusions. I am persuaded by the arguments of Mahy et al. for destroying existing stocks of the virus. The opponents are not really arguing against destruction, but rather for continued research. They might even agree that if no research is being done on the virus, it might as well be destroyed.

I find it hard to believe that we need to, or even will, continue research on a virus whose release from containment would be such a disaster while its present threat is nil. The opponents of its destruction propose a broad program of "studying in detail smallpox's molecular pathogenesis." They apparently believe that this can be done in a secure P4 facility. I have seen such facilities, and they are cumbersome, to say the least. I cannot see carrying out a wide-ranging program of molecular analysis on an eradicated disease in such a difficult and expensive facility. If any other facility were used, the problem of security would be serious: the opponents of destruction themselves note that in the laboratory in Birmingham, England, where escape occurred, "simple but essential administrative precautions were ignored." The sole insurance against a repeat would be the type of vigilance that only a P4 facility can maintain over the long haul.

While I agree that a deeper understanding of pathogenesis will help counter microbial infections, I doubt that we so desperately need to study smallpox that it would be worth the risk inherent in the experimentation. Much of the value of research can be gained from studying related viruses, especially vaccinia. Eradication of the virus as well as its disease will better serve the long-term interests of humanity as the proponents of destruction have argued.

David Baltimore
Rockefeller University,
1230 York Avenue,
New York, NY 10021-6390

The Importance of Restaurants in Superconductivity Research

We were surprised to read in Gary Taubes' Research News article "Holding the lines in high-temperature superconductors" (17 Sep., p. 1521) that the "ultimate solution to the problem" of pinning in high-Tc superconductors "was suggested at a Chinese restaurant in Anaheim, California, in March 1990" when "[John] Clem suggested that since a vortex is a linear object, 'a really keen way to immobilize it'... would be to create...a line-like potential well, a line of normal non-superconducting material, a microscopic hole through the super-
These custom-made, imprinted cases and binders are ideal for protecting your valuable Science copies from damage. Each binder or case holds one volume of Science, or 13 weekly issues—order four binders or cases to hold a complete year of issues. Constructed from reinforced board and covered with durable, leather-like red material and stamped in gold, the cases are V-notched for easy access; binders have a special spring mechanism to hold individual rods which easily snap in.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Cases</th>
<th>Binders</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>$7.95</td>
<td>$9.95</td>
</tr>
<tr>
<td>Two</td>
<td>$14.95</td>
<td>$18.95</td>
</tr>
<tr>
<td>Four</td>
<td>$27.95</td>
<td>$35.95</td>
</tr>
</tbody>
</table>

References

Response: Five recent epidemiological studies (1) show an increased risk of cancer for humans who have been exposed to high concentrations of dioxin. Several studies have also shown that dioxin causes cancer in both sexes of four species of animals exposed to dioxin—mice, rats, guinea pigs, and fish. A panel of outside experts in epidemiology recently reviewed the data on dioxin and agreed that "the human data are compatible with the animal data," says toxicologist Linda Birnbaum, director of the Environmental Toxicology Division at the Environmental Protection Agency's Health Effects Research Laboratory and one of the leaders of the agency's reassessment of dioxin risk.—Ann Gibbons

References

Accelerator Power Plants

An accelerator-driven energy production system at Los Alamos, as described by Peter Aldhous in News & Comment article "Rubbia floats a plan for accelerator power plants" (26 Nov., p. 1368), could provide an "unlimited" energy source and concurrently burn both long-lived fission products and highly radioactive actinide waste. The system essentially would have no long-term high-level waste stream. The thorium-uranium cycle would be much more practical in this regard than is the uranium-plutonium cycle. We also believe it could be economically competitive.

Is Dioxin a Human Carcinogen?

The statement in the article "Dioxin tied to endometriosis" by Ann Gibbons (Research News, 26 Nov., p.1373) that "[i]n human beings, there is evidence that high doses of dioxin cause cancer. . . ." is incorrect. Dioxin’s link with human cancer has not been established. Among others, the International Agency of Research for Cancer (IARC) considers the data "inadequate" for such a conclusion (1), and the particular publication that Gibbons’ article is based on (2) clearly states that "[a]lthough dioxin is a carcinogen and teratogen in rodents . . . the true biologic effects . . . in humans are not clear."

Alex Apostolou
Toxicology Consultant,
5201 Yosemite Drive,
Rockville, MD 20853

References

With accelerator-driven thorium–uranium power plants consuming most high-level wastes, it should then be possible to handle remnant waste from nuclear electric power production with man-made containers (engineered storage) that would need to retain continence for only a few hundred years—an attractive alternative to storage of untransmutated waste for tens of thousands of years by reliance on geologic containment in deep underground repositories. We cannot be certain at this point that our technology can meet the objective of economically competitive electric power production without a long-term high-level waste stream. Therefore, worldwide programs to develop geologic storage should continue, if only to take care of existing waste. Eliminating wastes, rather than bequeathing them (no matter how well stored) to distant generations is, we believe, appealing.

The use of a subcritical system in a thorium-driven power plant would absolutely prevent a runaway chain reaction such as that which occurred at Chernobyl. A loss-of-coolant accident such as that which occurred at Three Mile Island could be prevented by passively draining the liquid fuel.

We welcome the developing interest at CERN in this field, which may in some part be the result of our many presentations to the European Community over the past 3 years. However, eliminating only actinide waste, but not fission product waste (which is the most difficult to confine by geologic storage), would not justify the development of this advanced technology. We believe the CERN group eventually will recognize the need to address the whole waste problem, and we expect that their approach will evolve toward using the same liquid fuel (molten salt) that was studied thoroughly at the Oak Ridge National Laboratory and elsewhere, and which we have adopted.

Charles D. Bowman
Los Alamos National Laboratory,
Los Alamos, NM 87545

Basic Research and Weather Prediction

The shortsightedness of current attacks on basic research (E. Marshall, "Senate turns up the heat on NSF," News & Comment, 17 Sept., p. 1512) is well illustrated by the National Weather Service's (NWS) modernization program (R. A. Kerr, "Upgrade of storm warnings paying off," Research News, 15 Oct., p. 331). The concept and development of Doppler radars, which are at the heart of the NWS's ongoing $4.4-billion modernization program, and the demonstration of their utility for the detection of severe storms, were carried out by the meteorological basic research community in the 1950s through the 1980s. Now, within less than 2 years of the initial deployment of Doppler radars by the NWS, it has been shown that they greatly improve the operational forecasts of severe storms: forecasts are more accurate and there are significantly longer warning times for tornadoes.

However, in the immortal words of Al Jolson, "You ain't seen nothin' yet." Not, that is, if research into short-range weather prediction continues to be supported. The enormous quantity of high-quality data that will be provided by the NWS modernization program, when combined with a rapidly increasing understanding of weather systems and their representations by high-resolution numerical models, has the potential to provide spectacular improvements in short-range weather forecasts nationwide. A blueprint for realizing this potential has been developed by a multiagency task force (1). Implementation of this program requires an investment of just a few percent of the cost of the NWS modernization program. The social and economic payoffs will be enormous. Let's get on with it!

Peter V. Hobbs
Department of Atmospheric Sciences,
University of Washington,
Seattle, WA 98195

References

1. United States Weather Research Program: Implementation Plan (Subcommittee on Atmospheric Research, Committee on Earth and Environmental Sciences, Department of Commerce, Washington, DC, in press).

Corrections and Clarifications

In the report "Carbon monoxide: A putative neural messenger" by A. Verma et al. (15 Jan. 1993, p. 381), the first full sentence in column 3 on page 381 should have read, "Like NO, CO is a noxious gas that activates guanylyl cyclase (8), and it has been postulated that CO, derived from heme by the action of heme oxygenase, has physiological functions (9)." Reference 9 should have referred to an article by G. S. Marks et al. [Trends Pharmacol. Sci. 12, 185 (1991)], which was erroneously included in reference 8. References 9 through 24 should have been numbered 10 through 25.

In the report "The drift of Saturn's north polar spot observed by the Hubble Space Telescope" by J. Caldwell et al. (16 Apr., p. 326), the revised System III rotation rate of the drift was incorrectly calculated. It should not have been "810.737 ± 0.008" per day, as stated (fine 21, col. 1, p. 329), but rather "810.851 ± 0.008" per day."
The Best Just Got Better.

- Built-In Gas Guard Available*
- Power Failure Alarm
- Remote Alarm Contacts
- Water Jacket Drain
- UL Listed and CSA Certified

Special Offer: Free Built-In Gas Guard
$250 Value

Forma Scientific, Inc.
Box 649, Marietta, OH 45750 1-614-373-4763
Telefax: 1-614-373-6770 Telex: 29-8205
Toll-Free 1-800-848-3080
An ISO 9001 Company

FREE 60 page Cell Culture Incubator Catalog.

Circle No. 2 on Readers' Service Card
The 1993-94 Cole-Parmer Catalog is yours...

FREE!

To order your free catalog, just fax back the coupon below.

(700) 323-4340

This 1536-page resource offers more than 35,000 products for your research, industrial, and educational needs.

To place an order, obtain technical assistance, or learn more about our NEW products, dial (800) 323-4340.

Cole Parmer® Instrument Company
7425 N. Oak Park Ave. • Niles, IL 60714

Send us the “FAX” to get your FREE Cole-Parmer Catalog!

Name: ___ Title: ____________________________

Company: ___

Address: __

City: ___________________ State: __________ Zip: _______

Telephone: __________________ Fax: __________________

FAX: (708) 647-9660

Cole Parmer® Instrument Company
7425 N. Oak Park Ave. • Niles, IL 60714

Circle No. 13 on Readers’ Service Card
Introducing: Sequi-Gen® II/PowerPac 3000 Systems with Temperature Control

The Sequi-Gen II cell and NEW PowerPac 3000 Power Supply with temperature control are perfect for applications such as DNA sequencing, SSCP, and microsatellite mapping — where maintaining a set temperature is critical for good resolution. With the Temperature Probe, the PowerPac 3000 controls temperature from 0 to 90 °C by automatically adjusting power conditions — so you don’t have to!

Sequi-Gen II/PowerPac 3000 systems are available in three popular gel sizes with a wide range of spacers and combs. Combine this with our full line of gel reagents, electrophoresis buffers, and DNA purification and sequencing kits, and Bio-Rad becomes the source for all your sequencing needs.

Check out what’s hot in sequencing! For more information call 1-800-4BIORAD (1-800-424-6723).
Casting a new light

The Olympus B-Max 50. Not just a fluorescence microscope, but a revolutionary research microscope with fluorescence, brightfield, Nomarski DIC modes and more. All now instantly accessible thanks to the B-Max Universal Vertical Illuminator and the first Universal Plan Apochromat objectives designed specifically for use with both polarized light and high transmission of low UV wavelengths. So you see unprecedented resolution and light transmission—kept brilliantly faithful in even your most challenging photomicrographs.

And that's only the beginning.

The effort disappears.
Unlike any microscope before, the Olympus B-Max system design is inherently devoted to operator comfort.

In seconds, the optional binocular observation tube with continuously variable eyepiece inclination adjusts to your viewing angle. Your forearms and hands lie naturally on the tabletop as you turn the adjustable-torque coarse-focus and coaxial ultra-smooth 1-micron fine-focus knobs. And the rigid, tripod-like stand stays anchored to the bench, yet gives you more usable workspace.

Beautifully devoted to function.
With Universal Infinity-corrected Optics, the B-Max lets you switch applications with a new sense of freedom.
on fluorescence.

The PM30 combines an easier way to take photomicrographs with precise, auto exposure accuracy. And other innovations—like a Charge-Coupled Device 2-dimensional matrix sensor and micro-spot exposure measurement down to 0.1%—capture unexcelled B-Max images in all modes of microscopy.

No technique is too demanding for the PM30. With five exposure modes, including a Super Fluorescence Auto Mode that can automatically measure only those areas covered by the fluorescing material, you're assured of optimum results no matter how difficult your applications.

Taking you into tomorrow.
Application-directed. Cost-effective. Responsive research microscopy is here.

From body-conscious ergonomics that conquer fatigue to a high-technology, ceramic-coated stage. Plus advanced Universal Optics, illumination, system-wide accessories and photomicrographic equipment you'll be using into the next century.

A new focus on photomicrography.
The groundbreaking B-Max 50 also stands side by side with the highest standard of consistent, publication-quality photomicrography.

The new Olympus PM30 Photographic System.

Cryptococcus Cat Brain with blue excitation.

So see it first. In the new B-Max 50 Research Microscope System. Only from Olympus.

For a demonstration and information regarding our new book on fluorescence, call 1-800-446-5967.

OLYMPUS
B-MAX
SYSTEMS

PM30 Photomicrographic System with Super Fluorescence Auto-Exposure Mode.

Markham, Ontario, 416-479-4100, Fax: 416-479-1610.

Latin America: Miami, FL 305-266-2332, Fax: 305-261-4421.
Circle No. 4 on Readers’ Service Card
Saxtons River
Vermont

Protein Folding and Assembly in the Cell
Neural Mechanisms in Cardiovascular Regulation
Principles in Viral, Bacterial and Protozoan Pathogenesis
The Biology, Chemistry and Modeling of Vision: Visual Processing
Calcium and Cell Function
Repair and Regeneration: At the Interface
Membrane Molecular Biophysics: Structure and Dynamics
Viral Assembly
Intestinal Lipid Absorption, Metabolism and Transport
Plant Development and Cell Biology

Copper Mountain
Colorado

Retinoids
Smooth Muscle
Endothelium and Cardiovascular Control
Interactions of the Nervous and Immune Systems: Peptides, Cytokines, Growth Factors and their Receptors
Receptors and Signal Transduction
Protein Phosphatases
Physiology and Pathophysiology of the Splanchnic Circulation
Folic Acid, Vitamin B12, and One Carbon Metabolism
Cellular and Molecular Mechanisms of Liver Growth Regulation
Molecular Genetic Basis of Cell and Tissue Structure and Function

Santa Cruz
California

Developmental Biology
Nutrient Control of Gene Expression
Neurofibromatosis
Sorting and Intracellular Transport of RNA
Yeast Chromosome Structure, Replication and Segregation
Transcriptional Regulation During Cell Growth, Differentiation and Development

To receive complete conference schedules and the application form (available in Feb., 1994), mail or FAX this form to:

FASEB Summer Research Conferences Office
Bethesda, MD 20814-3998
FAX 301-571-0650

Please send information on the 1994 FASEB Summer Research Conferences to:

NAME ___________________________ FASEB Member Yes ___ No ___

DEPARTMENT ___________________________

AFFILIATION ___________________________

ADDRESS ___________________________

CITY ___________________________

STATE __________ ZIP CODE ___________ COUNTRY ___________
Information for Contributors

Science is a weekly, peer-reviewed journal with offices in Washington, D.C., and Cambridge, U.K., that publishes research in every field of scientific endeavor. Submitted manuscripts should be intelligible to readers in a variety of disciplines and should be brief and clearly written.

The guidelines below describe our manuscript selection, review, and publication process. Please follow these guidelines in preparing your manuscript to ensure speedy handling by our editorial offices.

Categories of Signed Papers

General Articles (3000 to 5000 words or three to five printed pages) are expected to review new developments in one field that will be of interest to readers in other fields; describe a current research problem or a technique of interdisciplinary significance; or discuss some aspect of the history, logic, policy, or administration of science. Readers should be able to learn from a general article what has been firmly established and what are unresolved questions or future directions. Many general articles are solicited by the editor-in-chief, but unsolicited articles are welcome. Both solicited and unsolicited articles undergo review.

General articles should include a note giving the authors’ names, titles, and addresses; an abstract (50 to 100 words); an introduction that outlines for the general reader the main point of the article; and brief subheadings to indicate the main ideas. The reference list should not be exhaustive; a maximum of 50 references is suggested.

Research Articles (up to 4000 words or four printed pages) are expected to contain new data representing a major breakthrough in a field. The article should include an author note, abstract, introduction, and sections with brief subheadings. A maximum of 40 references is suggested.

Figures and tables together with their legends should occupy about one printed page for General Articles and Research Articles.

Reports (up to 2500 words or three printed pages) are expected to contain important research results. Addresses for all authors should be listed on the title page and the corresponding author should be indicated by an asterisk. Reports should include an abstract (no more than 100 words) and an introductory paragraph. A maximum of 30 references is suggested. Figures and tables together with their legends should occupy no more than three quarters of a printed page.

Policy Forum (up to 2000 words or two printed pages) provides a platform to present discussions of policy issues relevant to science.

Perspectives briefly analyze recent research and the impact of new developments on future investigations, rather than present new results and hypotheses, and should not primarily discuss the author’s own work. Perspectives are limited to between one and two published pages.

Letters are selected for their pertinence to material published in Science or because they discuss problems of general interest to scientists. Letters about material published in Science may correct errors, provide support or agreement, or offer different points of view, clarifications, or additional information. Personal remarks about an author are inappropriate. Letters may be reviewed. Those selected for publication are intended to reflect the range of opinions received. The author of the paper in question is usually given an opportunity to reply.

All letters are acknowledged by postcard; authors are notified if their letters are to be published. Preference is given to short letters (250–500 words). Letters accepted for publication are frequently edited and shortened in consultation with the author.

Technical Comments (up to 500 words) may criticize articles or reports published in Science within the previous 6 months and may offer useful additional information. Minor issues should be resolved by private correspondence. The authors of the original paper are asked for an opinion of the comment and are given an opportunity to reply in the same issue if the comment is published. Comments and replies are subject to the usual reviewing and editing procedures. Priority disputes may undergo extensive review and are published only when action is recommended.

Book Review selections are made by the editors. Instructions and length specifications accompany items to be reviewed when they are sent to the reviewers, who are chosen by the editors.

Manuscript Preparation

Use double-spacing throughout the text, tables, figure legends, and references and notes, and leave margins of at least 2.5 centimeters. Put your name on each page and number the pages starting with the title page.

Texts and subheadings should be descriptive clauses, not complete sentences or questions. The maximum length for titles is 102 characters and spaces for general articles, and 98 characters and spaces for research articles and reports.

Abstracts should explain to the general reader why the research was undertaken and why the results should be viewed as important. The abstract should convey the paper’s main point and outline the results or conclusions.

Text. A brief introduction describing the paper’s significance should be intelligible to readers in different disciplines. Technical terms should be defined. All tables and figures should be cited in numerical order.

Figures and tables should be submitted on separate pages from the text. For each figure submit four high-quality prints, laser prints, or original drawings no larger than 22 by 28 centimeters (8½ by 11 inches). On the back of every figure write the first author’s name and the figure number and indicate the correct orientation.

Photocopies of figures are not acceptable; transparencies, slides, or negatives cannot be used because they cannot be sent to reviewers. Papers that include a large number of figures or tables and a small amount of text may present layout problems. In preparing the manuscript, try to maintain sufficient text to wrap around the figures.

On acceptance of a paper, authors requesting the use of color will be required to pay $600 for the first color figure or figure part and $300 for each additional figure or figure part to help defray the cost of obtaining color separations. There will be an additional charge for color figures in the reprints.

Cover illustration suggestions may be included with the manuscript. Submit prints, not slides, negatives, or transparencies. After an image is chosen for use on the cover, a positive transparency will be required.

Informed consent. Investigations on humans must include a statement indicating that informed consent was obtained after the nature and possible consequences of the studies were explained.

Animal welfare. Authors using experimental animals must include a statement that their care was in accordance with institutional guidelines. For animals subjected to invasive procedures, include the anesthetic, analgesic, and tranquilizing agents used, as well as the amounts and frequency of administration.

Uncertainties and reproducibility. Evidence that the results are reproducible and
the conditions under which this reproducibility (replication) was obtained should be explicitly stated. The effect of limitations in experimental conditions on generalizability of results should be discussed. Uncertainties should be stated in terms of variation expected in independent repetitions of the experiments; they should include an allowance for possible systematic error arising from inadequacies in the assumed model and other known sources of possible bias. Probabilities from statistical tests of significance should not replace the reporting of results and associated uncertainties.

Permissions to reprint illustrations or tables from other publications must be obtained in writing from the author. The written permission must include complete citation from the copyright owner (usually the publisher) to reprint such illustrations in Science. Papers are not sent to the printer until copies of all permission letters have been received.

Copyright law requires that we obtain copyright transfer from authors of each paper published in Science. Copyright forms are sent to all authors prior to acceptance and must be signed and returned to the Washington, D.C., editorial office immediately. U.S. government employees sign the section of the form stating exemption from copyright laws. Alterations to or substitutions for our form are not acceptable.

Manuscript Review and Selection

Before being reviewed in depth, most papers are rated for their interest and overall suitability by members of the Board of Reviewing Editors. Papers submitted in disciplines for which there is no appropriate member of the Board of Reviewing Editors may be screened by editorial staff in consultation with outside experts. Papers that are not highly rated are mailed back to the authors within about 2 weeks; the title page and abstract from one copy are retained for our files.

Approximately 35% of submitted papers are reviewed in depth by two or more outside referees. Reviewers are telephoned prior to being sent a paper and are expected to decline to review if they are not qualified or if there is a possible conflict of interest. Reviewers are expected to return their comments within 2 weeks and are instructed that the manuscript is a privileged document that is not to be disseminated or exploited. It is the policy of Science that reviewers are kept anonymous.

During the review process, the author may be required to submit to Science any computer programs by which the results presented in the manuscript were obtained if such programs are essential to replicating the data and are requested by a reviewer or editor.

When the review process is complete, the manuscript and reviewers' comments are discussed by the editors at a weekly meeting.

Manuscripts are evaluated in terms of their technical merit as well as their merit in relation to other papers that are or have been considered.

In selecting papers for publication, the editors give preference to those of novelty and general significance that are well written, well organized, and intelligible to scientists in different disciplines. An attempt is made to balance the subject matter in all sections of Science. Membership in the AAAS is not a factor in selection.

Authors are notified of acceptance, rejection, or need for revision, usually within 8 to 10 weeks. Accepted papers are edited to improve accuracy and clarity and to bring them within the specified length limits.

Papers cannot be resubmitted over a disagreement on interest level or relative merit. If the author can demonstrate that a paper was rejected on the basis of serious reviewer error, resubmission will be considered.

Conditions of Acceptance

When a paper is accepted for publication in Science, it is understood that

- any materials and methods necessary to verify the conclusions of the experiments reported will be made available to other investigators under appropriate conditions.
- archival data sets (such as sequence and crystallographic data) will be offered for deposition to the appropriate data bank and the identifier code will be sent to Science for inclusion in the published manuscript (coordinates should be released no later than 1 year after publication).
- the author or authors agree to transfer copyright of the paper to Science; and the paper will remain a privileged document and will not be released to the press or the public before publication.
- if there is a need in exceptional cases to publicize data in advance of publication, the AAAS Office of Communications (202-326-6440) must be consulted.

Authors may provide a copy of their manuscript on disk upon acceptance. Specific instructions will be provided when the manuscript is returned for revision.

Printing and Publication

Proofs and reprints. One set of proofs and an order blank for reprints are sent to the authors. All corrections should be marked on the author proof.

Scheduling. Papers are scheduled for publication after Science has received corrected proofs. Papers with tables or figures that present problems in layout, or with cover pictures, or that exceed the length limits may be subject to delay.

Checklist for Submission

Manuscripts should be addressed to the Editor-in-Chief, Science, 1333 H Street, NW, Washington, DC 20005, or to the senior editor, European office, at Thomas House, George IV St., Cambridge CB2 1NH, UK. Submit four copies together with a letter giving:

- the names and telephone numbers of all authors, and the fax number and electronic mail address of the corresponding author.
- the title of the paper and a statement of its main point.
- the names, addresses (including electronic mail addresses), telephone and fax numbers, and fields of interest of four to six persons outside your institution who are qualified to referee the paper. Also, please include any information needed to ensure a fair review process and to avoid potential conflicts of interest.
- the names of colleagues who have reviewed the paper.
- the total number of words (including text, references, and figure and table legends) in the manuscript.
- a statement regarding whether any of the material has been published or is under consideration for publication elsewhere.

Also include with your manuscript:

- any paper of yours that is in press or under consideration elsewhere and includes information that would be helpful in evaluating the work submitted to Science.
- written permission from any author whose work is cited as a personal communication, unpublished work, or work in press but is not an author of your manuscript.
- for manuscripts based on crystallographic data, two copies of the coordinates.
- any information about the authors' professional and financial affiliations that may be perceived to have biased the presentation.

By submitting a manuscript, an author accepts the responsibility that all those listed as authors of a work have agreed to be so listed, have seen and approved the manuscript, and are responsible for its content.
Acknowledgments, including funding information, should be gathered into a brief statement at the end of the references and notes and will be edited to conform to Science style.

Equations and formulas should be typed with quadruple-spacing if they are to be set off from the text. Define all symbols and number all equations.

Figures. Most figures will be printed at a width of 5.9 cm (2.3 inches or 1 column) or 12.2 cm (4.8 inches or 2 columns). Some illustrations (for example, bar graphs, simple line graphs, and gels) may be reduced to a smaller width. Symbols and lettering should be large enough to be legible after reduction. Composite figures should be labeled A, B, C, etc. If mounting is necessary, use cardboard. Legends should be typed double-spaced in numerical order on a separate page. No single legend should be longer than one page. Nomenclature, abbreviations, symbols, and units used in a figure should match those used in the text. The figure title should be given as the first line of the legend.

Line drawings should be labeled on the ordinate and abscissa with the parameter or variable being measured, the units of measure, and the scale. Scales with large or small numbers should be presented as powers of 10. Definitions of symbols should usually appear in the figure legend and not in the figure. Simple symbols (circles, squares, triangles, and diamonds, solid or open) will best survive reduction.

Recommended symbols at the size they should appear after reduction:

- ○ □ ▲ △

Avoid the use of light lines, shading, and stippling. Use heavy lines or boxes for emphasizing or marking off areas of the figure, and use black, white, hatched, and cross-hatched designs in place of stippling in bar graphs and ball-and-stick molecular models. Authors using computer graphics should choose screens between 20 and 60%.

Halftones, such as electron micrographs, should be submitted as high-quality prints or originals (do not send irreplaceable artwork). Use boldface type for axis labels and for the labels A, B, C, etc. in composite figures; use italic type only as it would be used in the text (for example, for variables and genes). The first letter of each entry should be uppercased; otherwise, use uppercase letters as they would be used in the text (for example, for acronyms). Avoid wide variation in type size within a single figure. In the printed version of the figure, letters should be about 7 point (2 mm) high.

Sequences may be reduced considerably, so make sure the typeface in the original is clear. There should be about 130 characters (including spaces) per line for a sequence occupying the full width of the printed page and about 84 characters per line for a sequence occupying two columns.

References and notes are numbered in the order in which they are cited, first through the text and then through the table and figure legends. List a reference only once. References that are always cited together may be grouped under a single number. Reference to unpublished data should be given a number in the text and placed, in correct sequence, in the references and notes. Use conventional abbreviations for well-known journals; provide complete titles for other journals. Do not use op. cit. See "Science Reference Style" (at right) for examples.

Symbols, abbreviations, and acronyms should be defined the first time they are used.

Tables should supplement, not duplicate, the text. They should be numbered in the order of their citation in the text. Each table should be generated on a separate page with its legend double-spaced above the table. The first sentence of the legend should be a brief descriptive title. Three horizontal lines are used in tables: at the top and bottom of the table and between the column headings and the table body. Vertical lines are not used between the columns.

Every vertical column should have a heading consisting of a title with the unit of measure in parentheses. Units should not change within a column. Centered headings of the body of the table can be used to break the entries into groups. (See the section on lettering for use of italic type and uppercase letters.)

Footnotes should contain information relevant to specific entries or parts of the table. The sequence of symbols for footnotes is *, †, ‡, §, ¶, ††, ‡‡, ‡‡‡, ‡‡‡‡, ‡‡‡‡‡, ‡‡‡‡‡‡, ‡‡‡‡‡‡‡, ‡‡‡‡‡‡‡‡, ‡‡‡‡‡‡‡‡‡.

Units of measure are given in metric. If measurements were made in English units, give metric equivalents.

Science Style Sheet

Science Reference Style

Journals
3. J. C. Cheesbrough III, S. Traynor, J. T. Yang, EMBO J., in press. [three to five authors]
4. G. Sunshine et al., Lancet, 711 (1975). [more than five authors]

Technical reports

Proceedings
3. Title of symposium published as a book, sponsoring organization, location of meeting, dates (publisher, location, year).

Paper presented at a meeting (not published)
1. M. Konishi, paper presented at the 14th Annual Meeting of the Society for Neuroscience, Anaheim, CA, 10 October 1984. [Sponsoring organization should be mentioned if it is not part of the meeting name.]

Theses and unpublished material

Books
(Zymed); plakoglobin (Pierce); desmosomal proteins (Sigma); desmoplakin (ICN, Cleveland, OH); and ZO-1 (Zymed). Incubations with secondary antibodies [donkey antibodies to rabbit or to mouse immunoglobulin coupled to fluorescein isothiocyanate] and visualization of stained cells were as in (9). Photomicrographs were prepared with a Codonics (Middleburg Heights, OH) NP600 printer.

18. Tumor tissue was surgically excised, fixed in formaldehyde (formalin), embedded in paraffin, sectioned, and stained with antibodies (16) or with 1% toluidine blue. For TEM, solid tumor areas were identified and cut from the paraffin block, deparaffinized, cut into 0.5-mm³ cubes, fixed in 2.5% glutaraldehyde for 2 hours at 4°C, washed four times with PBS for 30 min each, and post-fixed with 1% osmium tetroxide for 1 hour at 4°C. After washing with PBS, the samples were dehydrated in an acetone series and embedded in Epon 812 (Polyscience, Warrington, PA). Sections were cut with an LKB NOVA (Uppsala, Sweden) ultramicrotome. Semi-thin sections were cut with a glass knife and stained with 1% toluidine blue in 1% borax. Thin sections were cut with a diamond knife. Post-embedding immunoelectron microscopy was performed as in (9).

25. Serial sections of 11.5-day mouse embryos were processed as in (16) but were stained with antibodies to Metnu (SP260) (9, 24), cytokeratin (1:20 dilution), or vimentin (1:20 dilution). Immunofluorescence was analyzed by CLSM (16).

32. S. Rong et al., Cancer Res. 53, 5355 (1993).

33. We thank E. Rosen for the antibodies to HGF/SF; M. Arver and the Pathology Histotechnology Laboratory at the National Cancer Institute (NCI)--Frederick Cancer Research and Development Center for their assistance; D. Kaplan, M. Strobel, M. Murakami, and L. Parada for helpful comments; and M. Reed for preparation of the manuscript. Supported in part by NCI, U.S. Department of Health and Human Services (DHHS), under contract NO1-CO-74101. The contents of this publication do not necessarily reflect the view or policies of the DHHS, nor does the mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

24 June 1993. accepted 8 November 1993

AAAS–Newcomb Cleveland Prize

To Be Awarded for a Report, Research Article, or an Article Published in Science

The AAAS–Newcomb Cleveland Prize is awarded to the author of an outstanding paper published in Science. The value of the prize is $5000; the winner also receives a bronze medal. The current competition period began with the 4 June 1993 issue and ends with the issue of 27 May 1994.

Reports, Research Articles, and Articles that include original research data, theories, or syntheses and are fundamental contributions to basic knowledge or technical achievements of far-reaching consequence are eligible for consideration for the prize. The paper must be a first-time publication of the author’s own work. Reference to pertinent earlier work by the author may be included to give perspective.

Throughout the competition period, readers are invited to nominate papers appearing in the Reports, Research Articles, or Articles sections. Nominations must be typed, and the following information provided: the title of the paper, issue in which it was published, author’s name, and a brief statement of justification for nomination. Nominations should be submitted to the AAAS–Newcomb Cleveland Prize, AAAS, Room 924, 1333 H Street, NW, Washington, DC 20005, and must be received on or before 30 June 1994. Final selection will rest with a panel of distinguished scientists appointed by the editor of Science.

The award will be presented at the 1995 AAAS annual meeting. In cases of multiple authorship, the prize will be divided equally between or among the authors.
Science magazine and The Human Genome Organization (HUGO) are pleased to sponsor the most comprehensive update on the genome project.

Speakers include:
- Donna Shalala
 U.S. Department of Health and Human Services
- Harold Varmus
 National Institutes of Health
- C. Thomas Caskey
 HUGO
- Daniel Cohen
 C.E.P.H., France
- Francis Collins
 National Center for Human Genome Research
- Shirley Tilghman
 Princeton University
- Lloyd Smith
 University of Wisconsin
- Tadatsugu Taniguchi
 Osaka University, Japan
- Peter Gruss
 Max Planck Institute, Germany
- Maynard Olson
 University of Washington
- Alan Hall
 MRC, United Kingdom
- Gerald Rubin
 University of California
- Harold Weintraub
 Fred Hutchinson Cancer Research Center

Send me Human Genome 1994 info today!
I'm interested in: [] Conference [] Exhibition

Name _____________________________
Title ______________________________
Organization ________________________
Address ____________________________
City ________________________________
State ___________ Zip ________________
Phone ______________________________
Fax ________________________________

Mail or fax to: Global Trade Productions, Inc., 5203 Leesburg Pike,
Suite 1313, Falls Church, VA 22041. Fax (703) 671-7695.

Call (703) 671-1400 today or send in the coupon for more information.

Circle No. 26 on Readers’ Service Card
CUSTOM DNA SYNTHESIS
PURE & SIMPLE
(and now more economical than ever)

☐ PRICE $2.50 per base
+ $0.50 setup

☐ SUPERB TECHNICAL SUPPORT
+ IMPECCABLE QUALITY
+ WORLD'S FASTEST SERVICE

MIDLAND
THE UNDISPUTED #1 CUSTOM DNA SYNTHESIS SERVICE
THE MIDLAND CERTIFIED REAGENT COMPANY
3112-A WEST CUTHBERT AVENUE
MIDLAND, TEXAS, 79701
PHONE 1-800-247-8766 FAX 1-915-694-2387

Circle No. 22 on Readers' Service Card

who says science has to be serious?
Big Science, by Nick Downes
Now, after years of clipping his work from the pages of Science, you finally have the chance to add the very first Downes cartoon collection to your bookshelf: the perfect reference work on science and technology taken to extremes. Seen individually, Downes’s cartoons project a zany view of life in the laboratory—and beyond. But taken in larger doses—120 at a time, say—the Downes philosophy is revealed as truly subversive. Small wonder that Sidney Harris, dean of science cartoonists, says in his foreword to this collection, “I wish I thought of that.”

Only $10.95 (AAAS members $8.75)

Order today from: AAAS Books, P.O. Box 521, Annapolis Junction, MD 20701
Add $4.00 postage/handling per order, and CA sales tax or Canadian GST if applicable. To order by phone (VISA/MasterCard only) call 1-800-222-7809 (9am-4pm ET) and ask for AAAS, or fax your order to (301) 206-9789.

“The first major work to successfully convey how physicists think.”
—SIMPSON L GARFINKEL, Christian Science Monitor

FEAR OF PHYSICS
A Guide for the Perplexed
LAWRENCE M. KRAUSS

“If you really want to know how physicists tick...I can think of no better way than sitting down and reading this book.”
—DAVID HUGHES, New Scientist

“Runaway Brain
The Evolution of Human Uniqueness
CHRISTOPHER WILLS

“What could be more worthy of drama than the story of who we are and how we evolved?”
—RICHARD RESTAK, Washington Post Book World

“Virus Hunting will be read and re-read for years to come.”
—NEW YORK NEWSDAY

At last in Paperback!
ROBERT GALLO’S OWN STORY

BasicBooks
A Division of HarperCollins Publishers

At bookstores or toll-free 800-331-3761
Also available from HarperCollinsCanada.ltd

Circle No. 17 on Readers' Service Card
formity in the terminology of the field has suffered from a long-standing lack of consensus as to whether or not sound can be considered to have the attributes of an object.

Although cognitive, hearing, and speech scientists all have an interest in the topic of auditory cognition, this book will probably appeal most to cognitive psychologists. For full appreciation of all the material, it is helpful to have a reasonably good command of music notation and theory. However, even those without musical experience will find this a useful book for broadening their view of human cognition.

William Yost
Parma Hearing Institute,
Loyola University of Chicago,
Chicago, IL 60626

Books Received

Hormonally Induced Changes in Mind and Brain. Jay Schullin, Ed. Academic, San Diego, CA, 1993. xvi, 407 pp., illus. $64.95.

Vignettes: Mentoring

I tried to teach Fermi to fish, and it seemed to me he liked it. However, he once returned [to Los Alamos] from Chicago with a lake fishing rod and reel. I told him that it was not suitable for mountain streams, but to no avail. Fermi developed a theory on how trout should bite and on how to catch them. The theory was disproved by experiment, but this did not impress him in the least. Ultimately he abandoned fishing, but not his theory.

—Emilio Segrè, in A Mind Always in Motion: The Autobiography of Emilio Segrè (University of California Press)

I will never forget the time when a distinguished European physicist, on route to exploring academic positions in the United States, visited the Ewalds; after dinner he was taken aside by Paul, and admonished in all seriousness that the first thing he would have to learn as a professor in the United States is to help in washing the dishes. And so they both disappeared in the kitchen.