Success leads to uncertainty in fusion research

Pollinating the Cascadia earthquake record

Throttling Back the Great Lava Floods? 662
Astronomy: X-rays Make a Smooth Move 663

UNRAVELING FUNCTION IN THE TNF
Ligand and Receptor Families
B. Beutler and C. van Huffel

The Entropic Cost of Bound Water in
Crystals and Biomolecules
J. D. Dunitz

Application and Accuracy of Molecular
Phylogenies
D. M. Hillis, J. P. Huelsenbeck, C. W. Cunningham

Genetic Control of Programmed Cell
Death in Drosophila
K. White, M. E. Grether, J. M. Abrams, L. Young, K. Farrell, H. Steller

DEPARTMENTS
THIS WEEK IN SCIENCE 637
EDITORIAL
The Case for Diversity 639
LETTERS 641
K-T Boundary Issues: G. Keller; N. MacLeod; R. A. Kerr • Psychopharmacologic Drugs: Mechanisms of Action: P. Bach-y-Rita; S. H. Barondes

PERSPECTIVES

Random Samples 656
BOOK REVIEWS
A History of the Ecosystem Concept in Ecology, reviewed by C. E. Goeden • Hybrid Zones and the Evolutionary Process, J. W. Sites Jr. • The New Alchemists, A. Jayaraman • Vignettes • Books Received

INSIDE AAAS 730
PRODUCTS & MATERIALS 733
Four successive molts of an individual predatory crab, *Cancer productus*. Because crustaceans can only change form when they molt, their shape was thought unlikely to respond to environmental stimuli received during the preceding intermolt. Nonetheless, *C. productus* grew relatively larger and stronger claws in subsequent molts when their prey had harder shells. Therefore, the rigid exoskeleton does not prevent crustaceans from responding morphologically to environmental change. Longest dimension of largest molt is 60 millimeters. See page 710. [Photo: Richard Kozak]
Science 264 (5159), 637-733.