Thinking about a high performance thermal cycler for PCR at an affordable price? Think twice—about the GeneAmp® PCR System 2400 and the GeneAmp® PCR System 9600 from Perkin-Elmer.

Both GeneAmp® PCR Instrument Systems set the standard for reliable performance for oil-free PCR applications. And both offer unprecedented accuracy, reproducibility and speed.

Designed for the individual researcher, the 24-well System 2400 features a unique graphical user interface for faster, easier programming. The System 9600 is ideal for 96-well applications and lets you use PCR protocols developed on the 2400, to achieve the same results without reoptimization.

Perkin-Elmer offers a full line of optimized PCR reagents, specialty kits for advanced applications, and disposables for GeneAmp PCR Instrument Systems. All are backed by our PCR performance guarantee, worldwide technical support and comprehensive expertise—just what you expect from the leader in PCR technology.

So think twice. Choose the system that fits your throughput needs and budget. With the GeneAmp PCR System 2400 and the GeneAmp PCR System 9600, you can’t go wrong.

To order or to request information, call 1-800-345-5224. Outside the U.S. and Canada, contact your local Perkin-Elmer representative. You can also visit our home page on the Internet at http://www.perkin-elmer.com.

PERKIN ELMER

Europe | Langen, Germany Tel: 49 6103 708 301 Fax: 49 6103 708 310
Japan | Tokyo, Japan Tel: (0473) 80-8500 Fax: (0473) 80-8505
Latin America | Mexico City, Mexico Tel: (52-5)-651-7077 Fax: (52-5)-653-6223
Australia | Melbourne, Australia Tel: (03) 9012-9005 Fax: (03) 9012-9002

Perkin-Elmer PCR reagents are developed and manufactured by Roche Molecular Systems, Inc., Branchburg, New Jersey, U.S.A.

GeneAmp is a registered trademark of Roche Molecular Systems, Inc. The GeneAmp PCR process is covered by the U.S. patents owned by Hoffmann-La Roche, Inc. and Hoffmann-La Roche Ltd.

Perkin-Elmer is a registered trademark of The Perkin-Elmer Corporation.

Circle No. 36 on Readers' Service Card
NEW PRODUCTS for Soluble Protein Expression in E. coli.

End Insolubility
The ThioFusion™ Expression System from Invitrogen eliminates protein insolubility and the problems associated with it.
- No more difficult, time-consuming solubilization
- No more refolding of proteins that form inclusion bodies
With the unique E. coli protein thioredoxin as a fusion partner, formerly insoluble proteins are expressed in the soluble fraction. The ThioFusion™ Expression Kit contains the expression vector pTrxFus plus control vectors, essential media components, osmotic shock buffers, sequencing primers, and a comprehensive manual. Call for more information today!

ThioFusion™ Expression System Catalog No. K350-01

Simple Purification
Now you can purify your thioredoxin fusion proteins quickly and easily with ThioBond™ resin. This unique resin is specially formulated to specifically bind the active site of thioredoxin. Thioredoxin fusion proteins stick, E. coli proteins don’t. The result is pure thioredoxin fusion protein in less than 3 hours. Call us today for more information.

ThioBond™ Resin (10 ml) Catalog No. R350-10

Efficient Cleavage
The most efficient way to cleave your thioredoxin fusion protein is EnterokinaseMax™ (EKMax™). EKMax™, a recombinant preparation of the catalytic subunit of enterokinase, has many advantages over non-recombinant preparations including:
- EKMax™ is free of contaminants
- EKMax™ cleaves your fusion protein cleanly and efficiently

Digestion of Thioredoxin-Calmodulin Fusion with EKMax™

Don’t waste your time and money on non-recombinant enzymes. Try EKMax™ today!

EKMax™ (250 units) Catalog No. E180-01

Specific Detection
Track expression of your thioredoxin fusion protein with the Anti-Thio™ Antibody. Anti-Thio™ is a monoclonal antibody that is highly specific for thioredoxin. The antibody is ideal for detection in western blots and ELISAs. Call for more information.

Anti-Thio™ Antibody Catalog No. R920-25
Brian Ward, Ph.D.

- Presently working on DNA sequence recognition methods.
- Invented a novel method to qualitatively and quantitatively determine a DNA sequence recognition event.
- Solved dideoxy sequencing stalling by temperature ramping the termination reactions.
- Has worked in the Molecular Biology Department of Sigma for eight years.
- Received his Ph.D. from Michigan State University.

"Many of you think we're simply a reagent company. I'll bet you didn't realize we have an entire department devoted specifically to molecular biology."

Brian is presently concentrating his efforts on DNA sequence recognition methodologies. In addition, he is also an important part of a team working with nucleic acid isolation, recombinant protein expression, and transcription/translation technologies. You can find the products of Brian's work, as well as his co-workers', in the Molecular Biology section of the Sigma Catalog. And just like all the Sigma products you know and trust, your satisfaction is guaranteed.

For highly-specific, highly-sensitive molecular biology products and technical support, see Section Four of the Sigma Catalog. Call 1-800-325-3010 (USA/Canada) or 314-771-5750 (call collect outside USA and Canada) for your personal copy.

© 1995 Sigma BioSciences.

Circle No. 46 on Readers' Service Card
No Filters Required

Introducing SPECTRAmax™ 340...
The Tunable Microplate Reader

No Interference Filters Required
The SPECTRAmax™ 340 is not your traditional microplate reader. For starters, it does not use interference filters. Select the absorbance maximum of your sample, and let the monochromator tune to that exact wavelength. With the SPECTRAmax 340 it's like having 411 built-in filters, so you will always have the correct wavelength for any microplate assay.

Accurate Quantification
The patented sequential illumination eliminates stray light from adjacent wells, resulting in superior accuracy.

Uniform Microplate Temperature Control
Three heating sources offer precise microplate temperature control, and plate lid fogging is eliminated without the use of special reagents.

It's Affordable Too
The SPECTRAmax 340 costs no more than older filter-based microplate readers. And because you'll never need to buy optional interference filters, at ~$400 each, it's inexpensive to operate. It's like getting $160,000 worth of filters FREE.

Illuminate your possibilities by eliminating interference filters—contact your local representative today at 1-800-400-9060

Molecular Devices
1311 Orleans Dr., Sunnyvale, CA 94089
(800) 400-9060

Circle No. 29 on Readers' Service Card
Propagating acoustic strain waves depicted by magnetic resonance imaging (MRI). The dual-source interference pattern arose from 500-hertz mechanical shear waves applied to a tissue-simulating gel at two points (54 millimeters apart, at left). The MRI technique used can quantitatively depict mechanical waves with amplitudes on the order of hundreds of nanometers and could lead to the development of a medical imaging modality that emulates the clinical technique of palpation. See page 1854. [Image: Richard L. Ehman]

RESEARCH ARTICLE

Hemoglobin Allostery: Resonance Raman Spectroscopy of Kinetic Intermediates 1843
V. Jayaraman, K. R. Rodgers, I. Mukerji, T. G. Spiro

REPORTS

Understanding C–H Bond Oxidations: H- and H- Transfer in the Oxidation of Toluene by Permanganate K. A. Gardner and J. M. Mayer 1849
Global Distribution of Persistent Organochlorine Compounds S. L. Simonich and R. A. Hites 1851
Anisotropy and Spiral Organizing Centers in Patterned Excitable Media O. Steinbock, P. Kettunen, K. Showalter 1857
Replicator Neural Networks for Universal Optimal Source Coding R. Hecht-Nielsen 1860
Modulation of Transcription Factor Ets-1 DNA Binding: DNA-Induced Unfolding of an α Helix J. M. Petersen, J. J. Skalicky, L. W. Donaldson, L. P. McIntosh, T. Alber, B. J. Graves 1866

A Specialized Pathway Affecting Virulence Glycoconjugates of Leishmania 1869
A. Descoteaux, Y. Luo, S. J. Turco, S. M. Beverley

Jak-STAT Signaling Induced by the v-abl Oncogene N. N. Danial, A. Pernis, P. B. Rothman 1875
Lateral Interactions in Primary Visual Cortex: A Model Bridging Physiology and Psychophysics M. Stemmler, M. Usher, E. Niebur 1877
An Internal Model for Sensorimotor Integration D. M. Wolpert, Z. Gharamani, M. I. Jordan 1880
FFA-1, a Protein That Promotes the Formation of Replication Centers Within Nuclei H. Yan and J. Newport 1883

TECHNICAL COMMENTS

Honeybees and Magnetoreception H. Nichol and M. Locke; J. L. Kirschvink and M. M. Walker; M. H. Nesson; C.-Y. Hsu and C.-W. Li 1888
A Dynamite way to get your data:

Protein-Protein/DNA/RNA interactions
Cooperative Protein-DNA binding studies
DNA-Protein complex formation, immunoprecipitation

Protein-RNA binding assays

DNA binding

Protein-protein interaction, Mapping protein binding sites

Fusion protein binding assays

Analysis of truncation mutations in MDS
Screening for translation-terminating mutations in MDS

Polymerase
 RaDDit
 Reticulocyte Part

T7 L461
0
SP6 L4600
T3 L4950
T7/SP6 L5020
T7/T3 L5010

MAD-3 + p98 + c-rel + +

Probe Ig 1g 1g 1g 19

Ig competition

Mutational analysis
Easy, rapid method of screening large number of mutants. Safety assessment prior to large scale culture of toxins

Confirmation of ligand-binding region, analysis of mutants

Get shift analysis of deletion mutants

Verification of cloned genes
Verification that clone expressed a protein of the predicted size

Verification of cloning and immunoprecipitation

In vitro evolution studies

DNA to protein in a single tube...
TNT® Coupled Transcription and Translation Systems®

The TNT® Coupled Transcription/Translation Systems are a fast, efficient and reliable method for in vitro production of proteins.

We would like to recognize some of the numerous innovative applications our customers have developed using in vitro translated proteins generated in the TntT® Systems. For a bibliography, please call Promega and request part #BL001.

Reagents and a detailed protocol provided for 40 x 50μl coupled reactions

<table>
<thead>
<tr>
<th>Polymerase</th>
<th>Rabbit Reticulocyte</th>
<th>Wheat Germ Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7</td>
<td>L4610</td>
<td>L4140</td>
</tr>
<tr>
<td>SP6</td>
<td>L4600</td>
<td>L4130</td>
</tr>
<tr>
<td>T3</td>
<td>L4950</td>
<td>L4120</td>
</tr>
<tr>
<td>T7/SP6</td>
<td>L5020</td>
<td>L5030</td>
</tr>
<tr>
<td>T7/T3</td>
<td>L5010</td>
<td>L5040</td>
</tr>
</tbody>
</table>

Send us a copy of a publication using a TNT® System, and we’ll send you a TNT® System T-shirt free.

...only from Promega

Try the new trial size TNT® Coupled Reticulocyte System (Cat.# L4611).
The system provides sufficient reagents for 8 x 50μl reactions or 16 x 25μl reactions.

*U.S. Patent No. 5,324,637 has been issued to Promega Corporation for coupled transcription/translation systems that use bacteriophage RNA polymerases and eukaryotic lysates.

TNT is a registered trademark of Promega Corporation.
Walking by PCR in genomic DNA just got easier. CLONTECH's new Human PromoterFinder DNA Walking Kit (#K1803-1) lets you walk upstream or downstream in unknown genomic sequences, based on minimal DNA or cDNA sequence. It's ideal for finding promoter and regulatory elements, determining exon-intron boundaries, and walking from sequence-tagged sites. The combination of a specially designed adaptor and long-distance PCR allows efficient, specific amplification of long DNA fragments. Convenience and innovation. Only from CLONTECH. For more information, or to order, call 1-800-662-CLON or contact your local distributor.
Science in the Stationary Phase

Much of what we know about the mechanisms of catalysis and the regulation of biochemical processes has been learned from study of the growth and survival of microbes. After an interval of rapid growth, microbial cultures respond to impending stringencies in the environment. They sense that the feasting is over and that a major reordering of priorities is needed to survive in what is called the stationary phase. Hundreds of genes are turned on and off, which, along with adaptive mutations, ensures the survival of the colony during the stationary phase and the colony's reemergence under more favorable conditions. What we learn from microbes in the stationary phase will, it seems to me, have profound significance for how we as scientists cope with diminished support for science.

Modern science began in Europe about 300 years ago. As shown in a graph prepared by David Goodstein of the California Institute of Technology, the growth of science (as measured by the number of scientific journals) has been exponential, expanding by a factor of 10 every 50 years. If continued, this trend would extrapolate to 1 million journals by the year 2000, but fortunately it has tapered off to a mere 40,000. However, in the past decade, as more drastic reductions in support for the research enterprise have been made, U.S. science has entered a stationary phase. With sufficient effort, we may produce brief bursts of growth here or there, as microbial cultures do. But to ensure the continued survival of science, we must be resourceful in adapting to the stringencies of the stationary phase.

In the biomedical sciences, we have become increasingly vulnerable to the prospect of severe cuts in federal support. We must not let anyone be deluded into thinking that these cuts will be replaced to any significant extent by private and industrial sources of funding. In the period after World War II, over 90% of the support for the revolutionary advances made in the biomedical sciences came from the National Institutes of Health (NIH). No industrial organization would have invested or ever will invest millions of dollars annually, for decades, in projects that have no direct relevance to marketable products.

We are urged: Do strategic basic research! Do targeted basic research! How can we make clear the oxymoronic nature of these terms? It may seem impractical even to scientists to solve an urgent problem, such as developing treatment for a disease, by pursuing apparently unrelated questions in basic biology or chemistry. Yet it is a fact that throughout the history of medical science the pursuit of basic research has been the most practical and cost-effective route to the development of successful drugs and devices. Investigations that seemed irrelevant to the attainment of any practical objective have yielded most of the major discoveries of medicine. For example, x-rays were discovered by a physicist observing discharges in vacuum tubes; penicillin was isolated during enzyme studies of bacterial lysis; and genetic engineering and recombinant DNA were developed from the study of reagents used to explore DNA biochemistry.

As scientists, we lack the skills to make our case effectively. Universities, research foundations, professional societies, and pharmaceutical companies should band together to organize their resources and employ media professionals to convert to citizens and legislators the essential message that basic research is the linchpin of medicine. If the National Rifle Association can be so effective in delivering its message, why can't we do at least as well with a far better one?

In the face of so much uncertainty, would I recommend a career in science to my grandchildren? Emphatically yes! Science is unique among all human activities—unlike law, business, art, or religion—in its identification with progress. Regarding the means to do science, I think back to 1943 when I was studying rat nutrition at NIH and decided that research was more attractive than the clinical medicine I had chosen as a career. There were no grants then, laboratory resources were meager, and academic jobs were almost nonexistent. Those were not the good old days. But rich or poor, science is great! To frame a question and arrive at an answer that opens a window to yet another question, and to do this in the company of like-minded people with whom one can share the thrill of unanticipated and extended vistas, is what science is all about. That is what we must sustain in us and the days ahead.

Arthur Kornberg

The author is in the Department of Biochemistry at the Stanford University Medical Center, Stanford, CA.
Change... Growth... Adaptation...
Our vision of serving the future
needs of life sciences means
transforming the way we do business.

Our vision has built Sigma BioSciences - a
union of our Cell Culture, Immunochemical and
Molecular Biology divisions. Sigma BioSciences
combines the strengths of
each division to create a
balance of skills, disciplines
and customer support that
will set the standard into the next century.

Today, Sigma BioSciences stands as your single source
for life science research and manufacturing products.

We are committed to the success of our customers through science, technology and service.
Multiple-Use Physics Facilities

The article “Could defense accelerator be a windfall for science?” by Jonathan Weisman (News & Comment, 18 Aug., p. 914), raises an important issue about multiple-use facilities, given their attraction during constrained budget times. Whether or not it is practical to use an Accelerator Production of Tritium (APT) plant both for tritium production for the nuclear weapons stockpile and for neutron beam research is a complex issue that requires careful analysis of the technical, operational, and end user issues.

At present, neither the defense nor the research community believes that its needs can be met if it is forced to coexist with the other. We at Los Alamos believe that there are areas of research and development (R&D) that could be pursued jointly, but currently we are skeptical about a multiple-use facility because of the different operating modes and the tight APT schedule proposed to meet present tritium production requirements.

As Los Alamos APT project leader Paul Lisowski is quoted as saying in the article, accelerator beam power would be adequate both for tritium production and for the neutron beam research if the present tritium supply requirements were significantly reduced. Whether or not the Administration or Congress will settle on a multiple-use facility will depend on an objective analysis of all the pros and cons. We believe that both communities owe the country their best judgment to resolve this question.

A related issue is raised in the article regarding whether defense research (rather than defense production) and basic research can be performed at the same facility. We believe that this issue is less contentious, particularly when the primary purpose of the facility (neutron beam research) is common.

We agree that the performance of the Manuel Lujan Jr. Neutron Scattering Center (MLNSC) at Los Alamos National Laboratory's Neutron Science Center (LANSCE) accelerator facility did not meet user expectations in past years in terms of overall availability. However, in our view, the problems had little to do with the fact that LANSCE engages in both defense research and basic research that uses pulsed neutrons. The problems we encountered at the MLNSC resulted more from the fact that it was an auxiliary activity at the Los Alamos Meson Physics Facility (LAMPF), whose primary mission was nuclear physics, and thus the MLNSC did not enjoy the same priority or amount of resources. LAMPF users, who numbered about 1000 at LAMPF's peak, were apparently happy with the reliability that was provided.

The upshot of this arrangement was predictable—the availability and performance of the MLNSC suffered. This problem paralleled the one suffered by the Stanford Synchrotron Radiation Laboratory when it was an add-on to the Stanford Linear Accelerator. It has little to do with defense research and everything to do with prioritization, planning, and resources. Accelerator research facilities can be designed to provide reliable beams to multiple users, provided the user community is involved early in the planning, operational priorities are properly assigned, and resources are adequate. The European Organization for Nuclear Research (CERN) has successfully demonstrated this type of operation.

John C. Browne
Roger Pynn
Los Alamos Neutron Science Center,
Los Alamos National Laboratory,
Los Alamos, NM 87544, USA

We would like to remark on the article of Daniel Clery and Andrew Lawler (News & Comment, 17 Feb., p. 952), on that of Weisman, and on the letters of J. Michael Rowe and Louis Ianniello (21 Apr., pp. 349–350). With regard to the dual use of an accelerat-
tor facility for production of tritium, we believe it is unwise to combine neutron scattering capabilities with tritium production functions because such a facility would be costly to run. If the stockpile of tritium-bearing nuclear weapons were to be reduced faster than tritium decays (it has a half-life of 12.3 years), then the need for replacing tritium in the stockpile would disappear. Support of the installation for tritium production would disappear, and the research community would inherit an installation that by present standards would be unaffordable to operate. It also remains unestablished whether tritium producers (which only need volumes of neutrons) and neutron beam sources (which must be compact and, for time-of-flight applications, pulsed) can realistically and productively be fitted together.

Concerning a 5-megawatt pulsed spallation source (30 times the power of ISIS in the United Kingdom) most knowledgeable people believe that it can eventually be done. The Kohn panel (I) noted that if the Advanced Neutron Source (ANS) were not built, a 5-megawatt pulsed source would be needed. However, no one has yet clearly seen a particularly good way of accomplishing the 5-megawatt source or estimated what its cost might be, and it will take considerable time to work these problems out. Meanwhile, feasible concepts for a 1-megawatt, short-pulse source, the most versatile type, have already been developed and documented, with defensible estimates of costs and schedules. Such a source would exceed the capabilities of ISIS by a factor of six and in many ways exceed those of the Institute Laue-Langevin and cost about 25% as much as ANS. Proposals that a smaller source be built so as to be upgradable to 5 megawatts are attractive in principle but weak because the vision of the 5-megawatt upgrade is so dim. Moreover, the 30-fold jump, when existing experience already reveals engineering problems, calls for an intermediate step. It gives one pause to recall the many steps that lay between the Wright Flyer and the Concorde, which flies about 30 times faster.

Rowe properly calls attention to the upgrade of neutron facilities at the National Institute of Standards and Technology (NIST), which Clery and Lawler did not acknowledge. Great credit is due the NIST team for their accomplishment. But such upgrades represent at best a catching-up to the versatility and performance of the best reactor instruments, and not new capabilities on a world scale.

Ianniello observes that techniques other than neutron beam methods represent alternative ways to perform cutting-edge research. Yes, to some extent, but leaving off or putting off the neutron option surely means foregoing access to a hugely important range of information. So far, whatever shadow the new photon sources may cast on the fields where neutrons now hold sway is narrow; what more may yet be overshadowed is conjectural and the list is not exhaustive. Committees fully acknowledging the prospects for the photon sources endorse the construction of new, more powerful neutron sources because of their broad-ranging and still unique capabilities. The U.S. scientific community has waited a long time for a much-needed new, more powerful neutron source. A 1-megawatt pulsed source can be built now.

John M. Carpenter
Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL 60439-4814, USA
E-mail: jmcarpenter@anl.gov

References and Notes

You’ve probably made a few generalizations about us Swedes—that’s alright, we can take them. But making assumptions about the accuracy of your automated DNA sequencer can be costly. So demand proof.

ALFexpress™ provides you with speed, affordability and ease of use in giving you the highest accuracy from any automated DNA sequencer. More importantly, you can prove the accuracy of your data while your sequencer is in operation—and you can do it by yourself. How?

Let’s start with the proof. ALFexpress lets you display called bases of both raw and processed data. Viewing raw data provides you with immediate visual confirmation of ALFexpress’s reading accuracy—a must in demanding applications such as heterozygous detection.

Using single dye chemistry, ALFexpress eliminates spectral overlap and filtering problems and heightens the signal-to-noise ratio. Equipped with an outstanding base calling algorithm, you get accurate and reliable results. So with ALFexpress pumping out clean, clear data you can check, you reduce operation time.

By generating 300 base pairs of accurate sequenced data in about an hour, you gain the type of speed that’s difficult to match. As high-speed separations are equally important in fragment analysis, you can also separate between 150 and 200 base pairs in about 30 minutes on ALFexpress. Offering more than just sheer speed and accuracy, ALFexpress provides you with easy operating and working methods.

So easy that after only a two-hour introduction, six out of eight people with good lab experience—who had never used an automated DNA sequencer—got the kind of results that begin to prove this important point: you won’t need a supervising technician in your lab with ALFexpress. And that was just the first test.

Why not arrange to take your own? To start, just call us at 1 (800) 526 3593 in North America, or +46 18 16 5011 from the rest of the world; and ask for a brochure. It will give you more facts about the entire ALFexpress package. That’s right, facts—because the last thing anyone needs is more inaccurate documents.
I am concerned about a comment attributed by Weisman to Walter Kohn to the effect that the experience of LANSCE shows that dual use of a major accelerator is not feasible. My own experience, as director of LAMPF from its beginning until 1985, is quite the opposite. We found multiple use to be efficient, stimulating, and cost effective. We often operated more than 10 channels simultaneously, with negligible interference, even with the weapons neutron research facility, which received all the beam it could use, as does LANSCE today. Design and scheduling conflicts that Kohn mentions did not materialize.

The only requirement, as far as I can see, is that the operators and researchers (many hundreds from scores of institutions, in the case of LAMPF) be motivated, competent, and reasonable, and that management be enthusiastic about incorporating user needs and advice in the decision-making process.

At the moment, LAMPF is providing high-quality, high-intensity beam to LANSCE without interference from other experiments. One hopes that the neutron scattering community will take full advantage of the capabilities already available.

Louis Rosen
Los Alamos National Laboratory,
Los Alamos, NM 87544, USA

The Endangered Species Act

I represent 138 biomedical research scientists in areas such as drug development for AIDS, cancer, cardiovascular disease, pain relief, and the study of basic chemical and biochemical processes of health and disease. We believe that the progress of biomedical research and disease treatment depends on the maintenance of the greatest possible biological diversity in nature. Rather than allowing legislation currently before Congress to weaken one of our nation’s most important laws, we implore the President and Congress of the United States to support reauthorization of a strong and effective Endangered Species Act.

Plants and their attendant microorganisms have provided an armamentarium for cancer chemotherapy: Doxorubicin is used to treat acute leukemia, Hodgkin’s disease, other lymphomas, Wilms tumor, and several other cancers; bleomycin is used for the palliative treatment of squamous cell carcinomas; etoposide is valuable in combination chemotherapy against small cell lung cancer; vinblastine is one of the most effective single agents against Hodgkin’s disease; vincristine is used in combination therapy against acute leukemia, where 90% remission can be achieved in children; and taxol provides a therapy for ovarian cancer.

Using morphine as a model, medicinal chemists have made alterations to the drug that have produced a variety of other medicines including methadone, used in the treatment of heroin addiction, and dextromethorphan, a common constituent of cough syrups. Moreover, the scientific study of morphine (derived from the poppy) and its chemical relatives has led to the discovery of opiate receptors in the brain and to novel approaches to pain relief and narcotics addiction.

The plant products digoxin and digitoxin are routine medications for heart failure, and ouabain is used in the emergency treatment of potentially fatal heart rhythm disorders. Another botanical product, quinidine, is prescribed for the control of certain heart rhythm abnormalities.

Animals provide indispensable models for the study of the origins and therapy of human diseases such as leprosy (armadillo), late-onset diabetes (monkfish), and injured heart muscle (Mexican salamander, an endangered species).

Discoveries are made regularly of novel, natural products that contribute to new drug design and advance our understanding of health and disease. A Chinese plant, *Artemisia annua*, for example, provides arte-
misinin, a promising new therapy for chloroquine-resistant malaria.

For each beneficial discovery, a large variety of species must be examined. Thus, scientific success in natural product drug discovery depends on biological diversity, which represents nature's myriad solutions to challenges of species survival. A strong, effective, and well-funded Endangered Species Act provides a safety net for the diversity of life on Earth and so ensures that biomedical science will be able to continue to learn from nature.

Michael Clegg (Chair of the Committee on Scientific Issues in the Endangered Species Act of the National Research Council of the National Academy of Sciences) has written (1, p. 3; 2) that

The ultimate goal of the Endangered Species Act is to ensure the long-term survival of a species...the current rate of extinction is among the highest in the entire fossil record, in large part due to human activity. The introduction of non-native species and especially the degradation and loss of habitat are causing extinctions at a rate that many scientists consider a crisis.

Congress should accept the 1995 findings and recommendations of the National Research Council of the National Academy of Sciences in its reauthorization of the Endangered Species Act. This independent scientific body found (1, p. 3; 2) that "There has been a good match between science and the Endangered Species Act," and has emphasized that habitat protection on both federal and private lands is required for effective species protection.

A healthy future for humans depends on a healthy future for the species with which we share the Earth.

Paul F. Torrence
15105 Watergate Road,
Silver Spring, MD 20905, USA

References

Garlic and Mosquitoes

The report that marigold toxins kill mosquito larvae (1) (Random Samples, 12 May, p. 809) is not necessarily unique. S. V. Aman and others previously reported (2) that diallyl disulfide, a major component of garlic that contributes a large share of its odor and flavor, readily kills mosquito larvae. I believe I have observed such an effect. In 1989, the severity of onion and garlic white rot disease was so great in a standing garlic field in central Oregon that the crop was a total loss, even though half or more of the plants remained alive in mid-June. To prevent further increase in the inoculum, to reduce the population of the fungal pathogen Sclerotium cepivorum, and to kill off the remaining garlic (which would become a weed in subsequent crops), we flooded the field continuously between June and November. I waded weekly through the field collecting soil samples to monitor pathogen and garlic survival (3). No mosquitoes materialized in the field during these months, nor did the farmer who lived adjacent to the field notice any mosquitoes that summer. There were, however, many other insects and other invertebrates present in abundance. A slight garlic odor suggested that diallyl disulfide was leaking from the decaying garlic.

Fred Crowe
Central Oregon Agricultural Research Center,
Oregon State University,
Madras, OR 97741, USA

References

"Not-Even-a-Draft?"

The headline of a Science Scope item (18 Aug., p. 911) declares, "Major EMF report warns of health risks." There is no report. This is acknowledged in the text that follows, but the implication is that it's just a matter of time. It is more likely that the not-even-a-draft was leaked by its authors precisely because they knew its prospects for adoption by the National Council on Radiation Protection and Measurements (NCRP) lie somewhere between slim and zero. It is based on information that other agencies, including the American Physical Society (APS), have dismissed as inconclusive or worse.

Robert L. Park
American Physical Society, 529 14th Street, NW, Suite 1050, Washington, DC 20045, USA

Response: Park correctly points out that the information on which the NCRP panel based its draft report has been dismissed by others, including Park's own organization. We should have stated that explicitly. However, Park oversteps the mark. In a widely disseminated electronic newsletter, Park said the draft report "hasn't even been approved by the panel itself," and in his letter he calls it "not-even-a-draft." That's news to the panel members with whom we spoke and the executive director of the NCRP, who all told Science that the draft has been approved by the panel and sent on to the NCRP for review. As our item pointed out, it now faces an extensive and vigorous review process, standard practice for NCRP reports.—Editors

Pioneering Work

In the introduction of their Research Article reporting the total nucleotide sequence of the Haemophilus influenzae genome (R. D. Fleischmann et al., 28 July, p. 496), J. Craig Venter and his colleagues write that bacteriophage \(\Phi X174 \) was the first viral or organelar genome to be completely sequenced in 1977 by F. Sanger and his colleagues. May I point out that, although this is true for DNA molecules, the first viral genome to be completely sequenced was that of the RNA bacteriophage MS2 (1).

W. Fiers
Laboratory of Molecular Biology, University of Gent, B-9000 Gent, Belgium

References

Response: We wish to add to our Research Article acknowledgment of the pioneering work of Fiers and his colleagues and that of Joachim Messing and his colleagues. Fiers completed the publication of the sequence of the 3569 base pair (bp) RNA bacteriophage MS2 in April 1976 with the sequence of the third gene (replicase gene) from bacteriophage MS2. Messing's contributions of a set of M13-derived vectors, his pioneering work in the development of shotgun sequencing strategies, and the sequencing of the 8031-bp cauliflower mosaic virus in 1981 (1) are lasting contributions that we continue to build on today.

J. Craig Venter
Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA

References
Discover and Organize Scientific Information

Research Information Systems — powerful software tools to locate the latest citation data for life sciences and organize your reference collection.

ReferenceManager®

Store, search and retrieve selected references using the premiere bibliographic management software.

- Build a database by entering references from the keyboard, or by using the optional Capture module to import from most on-line, CD-ROM and diskette-based information services.
- New! Capture Definition Editor for Windows™ — Use this new utility for Microsoft® Windows™ to customize and create your own import filters.
- Generate bibliographies for publication, grant proposals, curricula vitae, or reading lists in virtually any journal style.
- Network editions available for Windows and DOS.

ReferenceUpdate®

Search the current tables of contents of 1,300 journals and identify articles of interest publication with Reference Update’s easy-to-use search software. Data is accurately formatted for storage in personal bibliographic management software. Select an edition with article abstracts in addition to citation data.

- Delivery options for the weekly issue include diskette, Internet or modem.
- Subscription options include a quantity group subscription, a multi-user LAN license, or data license.

For complimentary demonstration programs — Windows, DOS and Macintosh — and details of network and site discount options, contact Research Information Systems.

Research Information Systems
2355 Camino Vida Roble, Carlsbad, CA 92009-1572
Telephone: (619) 438-5526 Fax: (619) 438-5573 Toll Free: (800) 722-1227
Internet: risinfo@ris.risinc.com WWW: http://www.risinc.com/

Ask about our Competitive Upgrades for Reference Manager
Circle No. 13 on Readers' Service Card
What appears to be a simple filter is actually an on-line gateway to laboratory filtration techniques. Looks can be deceiving. This unassuming filter actually links you to our Internet site (URL: http://www.millipore.com), expert phone support and volumes of research and references. For laboratory analysis help, log on or call 1-800-MILLIPORE in the U.S. In Europe, fax to +33-88.38.91.95. In Japan, call (03)3474-9111. And use the filter with more behind it.
Whether you need a refrigerator full of primers and probes, or an exotic, one-of-a-kind modified oligo, Genosys is always ready to "build to suit."

Unlike many other suppliers, we actually welcome your special requirements. For example, labeled oligos for non-isotopic detection. Our "assorted flavors" include biotin, fluorescein, alkaline phosphatase, digoxigenin, ¹ ABI dyes, Texas red and rhodamine. All routine at Genosys.

Of course you’ll also want the highest quality. So you’ll be pleased to learn that Genosys delivers every oligo with its own Quality Assurance Certificate, including digitized PAGE analysis, quantitated yield, melting temperature, MW and μg/OD. As for delivery, standard orders are shipped within 24 hours; can anyone beat that?

If you have particular requirements for research-ready DNA—or if you’re just very particular about the DNA used in your research—call, fax or e-mail for our latest catalog. Maybe we can build something together.
PROVE SYSTEM GOLD®

Nouveau IS DIFFERENT.

Being different. That's hard to do in HPLC. Everybody claims to be reliable, reproducible and state-of-the-art.

The System Gold Nouveau difference is a rethinking of what exists in HPLC, to make it more of what you wanted all along.

SO WHAT IS THE DIFFERENCE?

- Peak purity displayed in real-time and automated solvent changeover between methods — for faster method development.

- Solvent modules that deliver constant flow even if air bubbles are present — for increased confidence during unattended operation.

- Single-point control from front panel or PC workstation.

- Optional total PEEK flow path.

- Wide dynamic flow range — microbore to semipreparative.

All of this makes for an uncompromised and versatile system at a reasonable price. And each configuration comes with a full year in-lab warranty and a qualified Beckman representative to handle installation.

System Gold Nouveau can make a difference in your research. For more information about the configuration that’s right for you, contact your local Beckman office or reach us through the internet at http://WWW.BECKMAN.COM.
Green-Pak SpaceSaver™

The environmentally-friendly refill system for pipette tip racks

New Green-Pak SpaceSaver tip reloading system refills racks in seconds. Just position the SpaceSaver over an empty Rainin 96-place tip rack and press down on the top. Each set of 96 tips pops into place instantly — in perfect alignment — without contacting hands, fingers or other sources of contamination. The next set is automatically lined up for the next rack.

SpaceSaver comes individually shrinkwrapped for protection. During loading the tips are protected on all sides by a plastic sleeve and on top by a plastic cover. A new presterilized version is also available.

- reduces plastic waste by 85%
- uses 68% less space

Green-Pak SpaceSaver takes up one-third the space and uses 85% less plastic than conventional 96-tip rack packaging. And when you’ve used all ten refills, just flatten the sleeve and recycle through community recycling or Rainin’s recycle program.

To order, call 800-4-RAININ

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS-96</td>
<td>Green-Pak SpaceSaver, to 250 µL, Ten stacked refills, each with 96 FinePoint™ Tips (includes one preloaded reusable rack and lid).</td>
<td>$38.50</td>
</tr>
<tr>
<td>GPS-96S</td>
<td>Green-Pak SpaceSaver, Same as above, Presterilized</td>
<td>48.50</td>
</tr>
<tr>
<td>GPR-96</td>
<td>Green-Pak Reusable Racks, Ten empty 96-place racks with lids</td>
<td>22.00</td>
</tr>
</tbody>
</table>

Patents Pending. Prices and specifications subject to change without notice. © 1995. Green-Pak, SpaceSaver, and FinePoint are trademarks of Rainin Instrument Co.
Quickly and easily with Pierce Slide-A-Lyzer™ Dialysis Cassettes!

Are you still wasting your research time wrestling with the hassles and mess of dialysis tubing? Wise up. With Slide-A-Lyzer™ Cassettes, you can perform dialysis faster and easier than ever—with total sample control and superior recovery.

Speed and convenience. You can load your sample for dialysis into a ready-to-use, disposable Slide-A-Lyzer™ Cassette using a syringe, in less than 1 minute—without boiling, soaking, tying or clamping. The exclusive Cassette format produces an increased sample-to-volume ratio, significantly increasing the rate of dialysis. Convenient accessory Buoy® float Cassettes during dialysis, and serve as bench-top Cassette stands during loading and recovery.

Total sample control, superior recovery. A hermetically sealed sample chamber with syringe guide ports provides complete sample control during loading and removal, and ensures consistently reliable recovery.

Slide-A-Lyzer™ Dialysis Cassettes have a 10,000 molecular weight cutoff and are available in several capacities to meet your sample volume requirements.
The new LEICA MZ12 stereomicroscope
with 12.5:1 zoom

LEICA MZ12 – the new fountain of knowledge

The new LEICA MZ12 stereomicroscope with 12.5:1 zoom opens up new fields of application and uncovers previously hidden information. For the first time, the magnification of an object can be increased uninterruptedly from 8x to 100x in a single zooming movement. The LEICA MZ12 has a wider zoom range and a higher maximum magnification than any other stereomicroscope on the market; it is also the most versatile in terms of applications.

Leica AG · CH-9435 Heerbrugg (Switzerland) · Telephone +41 71 70 31 31 · Fax +41 71 72 16 38

Leica – Natural reliability
second-order recombination (intermediate U) converts the molecules to the R state at pH 7.4; the remaining deoxy chain produces a R_{deoxy} UVRR difference spectrum. At pH 5.8, however, the tri-ligated molecules probably remain in the T quaternary structure and produce a positive W3 UVRR difference band for the interior tryptophan residues.

The most interesting conclusion to emerge from this study is that the allosteric reaction coordinate is not unidirectional, but instead proceeds by reciprocating tertiary and quaternary motions. Although the force generated by ligand dissociation is initially felt at the proximal His residue, the first large-scale protein motion (20 ns) involves the E helix, on the distal side of the heme. The next step (0.5 μs) is dimer rotation and the initial formation of the quaternary H bonds. The last step (17 μs) completes the circuit, locking the quaternary contacts into place and shifting the proximal F helix to its deoxy Hb position, thereby straining the Fe-His bond.

This strain is critical to cooperative ligand binding because it is responsible for lowering the affinity in the I state. The oxygen affinity has been directly linked to the Fe-His stretching frequency in various Hb's (32) as has the activation energy for CO rebinding (13, 26). Likewise, Gibson's transition from fast to slow recombining Hb (5) is shown by the present work to be a transition (S→T') from a relaxed to a strained Fe-His bond. This transition establishes the coupling of the ligation free energy to protein structure change, but it is mainly a tertiary, not a quaternary motion, in that the interdimer rotation has already occurred in S.

REFERENCES AND NOTES

33. We thank Professors Gary Ackers and Philip Anfinrud for helpful discussions and Beth Villafane for creating Fig. 7. Supported by NII grant GM 25156.
34. 20 December 1994; accepted 21 August 1995.
English he draws on are also problematic as sources, such as David Bergamini's sensationalistic Japan's Imperial Conspiracy (Morrow, 1971) and Edward Behr's impressionistic Hirohito: Behind the Myth (Villard, 1989).

For the Russian dimension, Harris draws on the readily available translated postwar Khabarovsk trial record. This transcript, however, does not shed much light on the single most direct combat confrontation between the Japanese and the Soviet Union, the small war waged at Nomonhan (Khalkhin Gol) between the Kwantung Army and the Red Army two years before Pearl Harbor. For this case history, Harris has consulted this reviewer's massive study, *Nomonhan: Japan Against Russia 1939* (Stanford University Press, 1986). There was a definite potential for the use of biological or chemical weapons at Nomonhan, but in the course of this reviewer's decades of research and interviews with 400 Japanese respondents, the unanimous testimony was that Ishii's unit only handled water-purification and epidemic-prevention measures at the front. Harris is acquainted with these missions (p. 74), but he is convinced that "Ishii viewed the outbreak of fighting at Nomonhan as a golden opportunity to test the possibilities of BW on a large scale" and that the Kwantung Army Commander finally gave him permission to do so by July 1939 (pp. 74–75). Harris also asserts that this reviewer "appears to believe that the fuss about BW use in the [Nomonhan] war was based on 'pseudonymous sources'" (p. 253).

A peripatetic scholar as tenacious as Harris might have exploited the proximity of Northbridge to San Diego to ascertain the basis for such contentions at first hand. He would have learned that once-classified Japanese archives reveal very real Japanese suspicions that it was the Russians who were contaminating the river at Nomonhan. As for Japanese culpability, Ishii later told the Kwantung Army chief of staff, in utmost secrecy, that the Japanese central authorities had authorized use of biological weapons but that he had declined to do so because countermeasures were not ready. As for the unconvincing pseudonymous leftist accusers, this reviewer expended much effort to trace them in Japan but could not determine their identities.

The first 10 chapters of Harris's book are devoted to Ishii (reputedly "a womanizer, a night owl, and a heavy drinker," as well as a big spender at places of amusement; p. 15) and to the various death factories in Manchuria and China. The last six chapters address the postwar cover-up involving American scientists and soldiers. An important appendix provides detailed data from the Chinese side concerning chemical weapons discovered abandoned in China by "a certain foreign state" (pp. 235–238).

Though his special anguish for the Chinese "martyrs" is apparent throughout, Harris has sifted through the evidence available to him with care and restraint. He has broken new ground with his exploration of the grisly subject of Japanese testing and field use of anthrax, typhus, and dysentery germs. He has provided biographical and chronological information and a "road map" for studying the cruel Japanese facilities and the resort to human guinea pigs—the so-called manua, or "logs"—at Bei-yinhe, Ping Fan, Changchun, and Nanking. Perhaps such publicity underlies the Japanese government's belated decision in 1995 to send military and chemical experts to...
China to seal 30 decaying poison gas shells and three vats of mustard gas located by the Chinese authorities. The Japanese had already dispatched teams to China to check on possible soil contamination, but this is the first effort to neutralize some of the 2 million Japanese gas shells that reportedly remain buried in northeast China.

The physical apparatus of the factories of death was demolished by the Japanese 50 years ago. Regrettably, the legacy of psychological scars inflicted by the "certain foreign state" can never be eradicated from the pages of Sino-Japanese history.

Alvin D. Cox
Japan Studies Institute,
San Diego State University,
San Diego, CA 92182, USA

Evolution by Reticulation

Corals in Space and Time is a monumental synthesis of the evolution of corals in which the author challenges Charles Darwin head on. Veron argues that, instead of evolving dichotomously along discrete lineages as a result of natural selection as proposed by Darwin, coral species perpetually fuse (by hybridization) or separate (by isolation and genetic drift), giving rise to a reticulate pattern of evolution. Veron's theory of reticulate evolution initially grew out of his observation of the abundance of intergrades between species. He describes his early years of separating and classifying corals, in fact, as "a failure." In the last decade, three discoveries have bolstered Veron's theory with regard to corals. First, it has been established that about three-quarters of all coral species are spawners, releasing their gametes into the water column, where external fertilization takes place. The second discovery is the synchronous mass-spawning events on the Great Barrier Reef of Australia, where many dozens of coral species spawn (within a few days of each other) at the same time of the year, producing a rich soup of reproductive material that can lead to frequent hybridization. The third discovery is an increasing list of species that can produce viable hybrids at least at the F1 generation. From all this Veron has concluded that coral intergrades are in fact hybrids, some viable but sterile, some viable and reproductive, some fusing back to the parent generation, some diverging, but together forming a species complex of races and subspecies—a large genetic pool of interconnected populations that he calls a syngameon. Such a species is not discrete; its boundaries are fuzzy, and it represents a continuum of variation. At opposite ends of the continuum species may appear different, but all varieties along the continuum are interfertile. The species complex may also include sterile hybrids, which can be ecological dominants, that is, species that may not themselves reproduce but that play a dominant role in the ecosystem and are continually reproduced over time by hybridizing parental populations.

The syngameon is an interconnected net of populations (races, subspecies, and species) that either converge or diverge in space and time depending on gene flow. Their connectivity in turn depends on the strength and direction of currents. Veron does not deny that natural selection is embedded within the process, but he sees connectivity, or the lack of it, as more important in species evolution. In this regard, this analysis is in agreement with neo-Darwinists Ernst Mayr, Niles Eldredge, and Stephen J. Gould. Veron sees ocean currents, a physical process, as being the dominant control over evolution in corals. He also invokes reticulate evolution to explain why biodiversity in corals is not higher. Hybridization and reproductive connectivity favor fusion and damp separation (speciation). Most coral reefs in the Indo-West-Pacific...
are characterized by less than 10 percent endemicity. This also helps to explain the very long average age (10 million years) of coral species in the fossil record.

Veron does not overlook the fact that low coral biodiversity can also be a consequence of low habitat diversity; reef-building corals occur only in the eutrophic zone and in the tropics. Veron explains similarities in species composition as due to similarities in habitat. Reefs characterized by large differences in physical habitat though separated by a few miles may be more different than reefs with similar habitat on western and eastern coastlines of Australia, a separation of over 1000 miles. Herein may lie a limitation to Veron’s argument. If corals need to retain genetic specialization (for example, habitat specificity), they must avoid hybridizing with species occupying very different but nearby habitats. Veron does not discuss this problem, but then he does not claim that reticulate evolution applies to all corals any more than it applies to all species in nature.

Thus Veron does not argue either-or regarding dichotomous or reticulate evolution; rather, he offers the latter as a significant process to explain the evolution of those species that can successfully hybridize. The hypothesis of reticulate evolution is not new regarding plants, but it has been given little consideration in animal systematics. Veron suggests that reticulate evolution may be a major mechanism in the evolution of many marine invertebrates (among them crustaceans, mollusks, polychaetes, and echinoderms) and some vertebrates, notably Amphibia, in which fertilization is external. This is the major contribution of the book, and it should usher in a plethora of new research to test the generality of the hypothesis. If it occurs broadly, reticulate evolution should wreak havoc on traditional cladists. Ultimately, the overall importance of reticulate evolution may be proved or disproved by molecular genetics. Thus the book represents a challenge for future research.

Having focused on the positives, I would be remiss not to mention some shortcomings. Perhaps the most bothersome to me is Veron’s use of the term “vicariance circulation” to explain both separation and connectivity. Clearly circulation (ocean currents) can cause both, but the term “vicariance” refers to separation only. Other bits of jargon, such as “connectivity ratchets” are distracting, although Veron’s meaning is clear. The references in some chapters are rather spotty, and some types need correcting, such as the latitude of Clipperton Atoll (10 degrees north, not south). The writing in places is somewhat nebulous, but this is more than offset by the numerous summaries of main points and conclusions. It may take a decade of research to verify reticulate evolution as a major evolutionary process. If it proves to be such, history could well place Veron’s Corals in Space and Time on the shelf alongside the works of Darwin, Mayr, Eldredge, and Gould.

Richard W. Grigg
Department of Oceanography,
University of Hawaii,
Honolulu, HI 96822, USA

Books Received

Encounters with Qi. Exploring Chinese Medicine. David Eisenberg, with Thomas Lee Wright. Norton, New

Electrophoresis Brought To Life

The power of 2-D electrophoresis is now brought to both analytical and preparative scale applications. Using Oxford GlycoSystems’ Investigator™ 2-D electrophoresis system, you can move easily from 1-st dimension isoelectric focusing (IEF) to 2nd dimension PAGE gels, then to blotting and sequencing your target protein.

...an obvious choice

Investigator 2-D systems are the most widely used complete 2-D electrophoresis systems.

- Duracry™ high performance gels
- Dedicated reagents
- High resolution and reproducibility
- Integrated temperature control system
- Up to 10 gels per run
- Preparative gels

With a capacity of up to 1 mg protein total, and recovery of up to 10 μg from a single spot, you’ll find the Investigator the obvious choice.

For a FREE information pack on how Investigator™ systems can improve your electrophoresis applications contact us today.

Oxford GlycoSystems

USA and Canada: Tel: (617) 533 0100, Fax: (617) 533 0110, Toll-Free: 1-800-722 2597

UK and Europe: Tel: +44 (0)1235 553066, Fax: +44 (0)1235 554701, Toll-Free: 0800 2102061

Tollfree to UK from: Switzerland 055 2795; France 0590 86 08; Germany 0130 81 37 48

Japan: Tel: 3-3862-2108, Fax: 3-3866-5165

It's time to remove the guesswork from carbohydrate chemistry. Try our extensive selection of carbohydrates, both simple and complex, for your research needs.

PFANSTIEHL LABORATORIES, INC.
The source for carbohydrate chemistry
1210 Glen Rock Avenue / Waukegan, IL 60085-0439
1-708/823-0370 • Toll Free: 1-800/363-0126 • FAX: 708/823-9173
International: Pfansthiel (Europe) Ltd. • +44 (0) 1606.33825 • FAX: +44 (0) 1606.33826

Circle No. 27 on Readers' Service Card
....The Carbohydrate Super-Highway

GlycoGel™ Carbohydrate Electrophoresis System is your Super-highway to investigating glycosylation.

If you're looking for high-throughput carbohydrate characterization that yields predictable separations AND doesn't require capital equipment, Try GlycoGel.

Easy GlycoGel system includes everything you need; fluorescent labelling, pre-cast gels, running and sample buffers, labelled markers and standards, and a great 1-D electrophoresis unit.

Fast 8 lanes and 2 gels per 90 minute run.

Sensitive Femtomole sensitivity. Map carbohydrates from as little as 10 µg glycoprotein.

Predictable Charged and neutral N- and O-glycans Separations separate on a single pre-cast gel with a choice of running buffers.

Safe GlycoGel 1-D electrophoresis unit operates at room temperature and is designed to meet IEC 1010 safety standards.

Low cost Low initial and running costs.

For FREE technical information and details of our introductory offer, call, write or email us on ogs-info@dircon.co.uk TODAY.

Oxford GlycoSystems

ANNOUNCEMENT

GRANT PROGRAM

Molecular Devices Corporation offers a limited number of equipment grants to both U.S. and International academic/government institutions performing basic research in mammalian cell biology. The intent of this grant program is to provide academic/government researchers access to the Cytosensor® Microphysiometer technology at a substantially reduced cost, thereby enabling them to make novel discoveries using the Cytosensor System, with the ultimate goal of publication.

Briefly, the Cytosensor System is the latest tool for studying the physiological consequences of receptor activation; it has been shown to be particularly useful for drug discovery and signal transduction research. The System can monitor receptor-mediated responses from living cells in minutes, providing functional dose responses in just a few hours. Receptor activation can be studied even without previous knowledge of the signal transduction pathway.

For a comprehensive information package including guidelines for grant submittal, scientific publications, Application Notes, Technical Bulletins and a Reference Guide please contact:

Molecular Devices Corp.
1311 Orleans Drive
Sunnyvale, CA 94089
PH: (408) 747-3545
FX: (408) 747-3602

Circle No. 43 on Readers' Service Card

Look in the Stoelting Catalog...
For your Physiology instrumentation needs.

"Where can I find a line of affordable, automated, syringe pumps?"
See pages 24-29.

"Is there a better choice in stereotactic instrumentation?"
See page 2-8.

"Is there any one pipette puller that can pull all the sizes and shapes that I need?"
See page 18.

If you don't already have the Stoelting catalog, call today for your free copy.

Stoelting, 620 Wheat Lane, Wood Dale, Illinois 60191 U.S.A.
Phone: (708) 860-9700 Fax: (708) 860-9775
P.S.-Ordering is easy. We can ship direct on international orders!
1996–97

Applicants should be postdoctoral to midcareer scientists and engineers, from any physical, biological, or social science or any field of engineering. The programs are designed to provide each Fellow with a unique public policy learning experience; to make practical contributions to the more effective use of scientific and technical knowledge in the U.S. government; and to demonstrate the value of science and technology in solving important societal problems. All Fellows participate in a rigorous orientation on the relevant congressional and executive branch operations and foreign affairs plus a year-long seminar series on issues involving science, technology, and public policy. The new, year-long Environmental program, as well as the Congressional, Diplomacy, and Technology Policy programs, begin in September 1996, and the summer Environmental program begins in June 1996. All grant-funded programs are subject to continued support.

All application deadlines are January 15, 1996.

For additional program information and application instructions, write: Fellowship Programs/Directorate for Science and Policy Programs
AAAS
1333 H Street, NW,
Washington, DC 20005
202/326-6600 Fax: 202/289-4950
Internet: science_policy@aaas.org

AAAS FELLOWSHIPS FOR SCIENTISTS AND ENGINEERS

CONGRESSIONAL
AAAS CONGRESSIONAL SCIENCE & ENGINEERING FELLOWS PROGRAM

Fellows spend one year on Capitol Hill working with Members of Congress or congressional committees as special assistants in legislative and policy areas requiring scientific and technical input. Two fellowships will be offered, with annual stipends of $40,000.

TECHNOLOGY POLICY
AAAS-CRITICAL TECHNOLOGIES INSTITUTE SCIENCE & ENGINEERING FELLOWS PROGRAM

Fellows spend one or two years, working at the Critical Technologies Institute, providing expertise in industrial research and development, technology transfer, international competitiveness, and related issues. At least one Fellow will be selected. Applicants must have a minimum of five years industrial experience, as midlevel or senior executives. Stipends are negotiable, depending on qualifications and experience. Applicants must be U.S. citizens. An additional fellowship opportunity may be available at the White House Office of Science and Technology Policy.

ENVIRONMENTAL
AAAS/EPA ENVIRONMENTAL SCIENCE & ENGINEERING FELLOWS PROGRAM

Fellows work at the U.S. Environmental Protection Agency—either on issues relating to risk assessment, in a new one-year program, or on a variety of research projects for 10 weeks in the summer. The Fellows assist EPA in assessing the significance of long-range environmental problems. The stipend for the one-year program is $40,000; for the summer program it is $950 a week. Applicants must be U.S. residents. Five Fellows will be selected for the year-long program; 10 for the summer program.

DIPLOMACY
AAAS SCIENCE, ENGINEERING, & DIPLOMACY FELLOWS PROGRAM

Fellows work in international affairs on scientific and technical subjects for one year, either in foreign policy at the U.S. Department of State or in international development for the U.S. Agency for International Development. One Fellow will be selected at State and approximately 12 Fellows will be selected at USAID. The annual stipend varies with experience, starting at approximately $45,000. Applicants must be U.S. citizens.
Products & Materials

Protein Purification Workstations
The BioSys 500 Series protein purification workstations are designed for the first stage of protein study. These systems deliver accurate buffer gradients from microliters to 30 ml per minute, with an upper pressure limit of 2500 psi. A biocompatible polyetheretherketone (PEEK) flow path ensures that there is no loss in biological activity for proteins. A unique piston seal wash on each pump allows use of very high strength aqueous buffers without fear of premature pump failure. It offers dual pump design and operation in isocratic or gradient mode, with a choice of manual or automatic injection modes. Selection valves offer four different buffers per pump. Beckman Instruments. Circle 137.

Affinity Electrophoresis System
The Affinity Co-Electrophoresis (ACE) system analyzes protein–nucleic acid binding for molecular complexes and biological interactions involving binding. A labeled nucleic acid fragment (ligand) is forced to migrate through precast lanes in a horizontal agarose gel containing a dispersion of protein molecules. Slower migration of the ligands indicates higher concentrations of binding proteins in the matrix. The ACE is capable of isolating molecules from a heterogeneous mix, or for their potential biological or therapeutic effects, based on their affinity for a target molecule. Its broad range of applications range from fractionating oligonucleotides by affinity to measuring binding over a wide range of conditions rapidly and with high sensitivity. Unlike traditional gel retardation, ACE allows measurement under equilibrium conditions. Owl Scientific. Circle 138.

Messenger RNA Purification Kit
The MPG Direct mRNA Purification Kit provides a fast and reliable means for isolating pure, intact mRNA. After a single round of magnetic separation, mRNA is purified directly from animal tissue, plant tissue, or cells in less than 20 min. The mRNA is captured on oligo(dT)35-bound MPG streptavidin magnetic particles and released in water with purities >1.85 as measured by A260/A280. This kit eliminates the need for total RNA isolations, phenol and chloroform extractions, and long overnight centrifugations through cesium and chloride gradients. CPG. Circle 139.

High Sensitivity Immunoblotting Kit
The High Sensitivity Immunoblotting Kit makes use of hors eradish peroxidase (HRP)–conjugated streptavidin-biotin complex and luminol-HRP chemiluminescence reaction with thiazol as an enhancer to allow the user to detect subpicogram levels of antigen with lower background than existing methods. The chemiluminescence reaction solutions are also available as a detection set. Wako BioProducts. Circle 140.

Automated Immunostaining System
The OptiMax immunostainer is part of a complete system providing reliable, walk-away automation of immunohistochemical staining. The system includes sensitive antibodies and detection reagents, patented Antigen Retrieval pretreatment technology, and computer-controlled automation of the traditional horizontal staining technique. The in-

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and government organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS is not implied. Additional information may be obtained from the manufacturers or suppliers named by circling the appropriate number on the Readers’ Service Card and placing it in a mailbox. Postage is free.