HYDROGEN-BASED MICROBIAL ECOSYSTEMS IN THE EARTH

Todd O. Stevens and James P. McKinley (1) report finding hydrogen gas (H₂) of possible geochemical origin, and they propose that this H₂ supports lithotrophic methanogenic bacteria that are physiologically active beneath the Columbia River plateau.

Methanogenic bacteria are ubiquitous in the biosphere's anaerobic habitats (for example, in soils and sediments), and the ability to use H₂ as an electron donor for carbon dioxide reduction to methane is almost universal among methanogens (2). In order for methanogens to be linked to photosynthesis, H₂ is usually produced by an anaerobic microbial food chain responsible for the decay of photosynthetically produced plant materials. But H₂ production is also commonly associated with geothermal activity. Furthermore, a variety of habitats where geothermal H₂ is emitted have been shown to support methanogenic bacteria (2, 3). These previously described microorganisms do precisely what was postulated for the microbial community beneath the Columbia River plateau: They grow in anaerobic habitats at the expense of abiotic H₂. Thus, as a strictly physiological phenomenon, the subject of Stevens and McKinley's report is not unique.

There are, however, three ecological aspects of the work that merit attention: (i) The proposed H₂ source for methanogenic life was neither biogenic (from an anaerobic food chain) nor geothermal; (ii) C isotopic ratios suggested that methanogenesis was occurring in situ, within the basaltic subsurface deposits; and (iii) lithotrophy (regardless of its aerobic or anaerobic basis) has not been previously reported in subsurface environments. Given the diversity of microbial biogeochemical reactions and efforts by scientists to describe them (4), it is important to place new discoveries within the scholastic context of microbial ecology.

Eugene L. Madsen
Section of Microbiology,
Division of Biological Sciences,
Cornell University,
Ithaca, NY 14853–8101, USA

REFERENCES

4. H. G. Schlegel and H. W. Jannasch, in The Prokaryotes, A. Balows et al., Eds. (Springer-Verlag,
9. 19 December 1995; accepted 27 February 1996

Response: Madsen raises a point about the significance of the microbial communities that we reported within the Columbia River Basalt Group (CRB) (1). Certainly, we are not the first to propose that microorganisms can gain energy from oxidation of geochemically produced H₂. Some investigators have even proposed hydrogenotrophy-based ecosystems in the subsurface environment (2). To our knowledge, however, actual evidence for in situ hydrogenotrophic production from rates of organic matter fermentation. Thus, high H₂ concentrations are not evidence that H₂ is coming from an abiological source.

Stevens and McKinley found that microbial enumerations recovered higher numbers of H₂-consuming microorganisms than fermentative bacteria. However, it is well known that viable counts are unreliable indicators of true microbial numbers and that organic-rich media (such as that used to enumerate the fermentative bacteria) may be toxic to heterotrophic microorganisms living in organic-poor environments such as aquifers.

Finally, Stevens and McKinley state that the "igneous rocks in the study area contained little organic carbon," suggesting that this is an organic-poor environment. However, given the low rates of microbial metabolism in deep aquifers, a "little" organic C may go a long way.

The discovery of active H₂-dependent methanogenesis in deep basaltic aquifers of the western United States lends further credence to the suggestion (4) that lithotrophic microbial ecosystems exist in the deep terrestrial subsurface of Earth and possibly other planets. However, there are as yet insufficient data to conclude that H₂ produced from abiological basalt weathering is the primary electron donor supporting the microbial community in these aquifers.

Derek R. Lovley
Department of Microbiology,
University of Massachusetts,
Amherst, MA 01003, USA
E-mail: dlovel@microbio.umass.edu

Francis H. Chapelle
U.S. Geological Survey,
720 Gracem Road, Suite 129,
Columbia, SC 29210, USA

REFERENCES

5. 19 December 1995; accepted 27 February 1996

Response: Madsen raises a point about the significance of the microbial communities that we reported within the Columbia River Basalt Group (CRB) (1). Certainly, we are not the first to propose that microorganisms can gain energy from oxidation of geochemically produced H₂. Some investigators have even proposed hydrogenotrophy-based ecosystems in the subsurface environment (2). To our knowledge, however, actual evidence for in situ hydrogenotrophic
primary production has not been reported. The studies cited by Madsen do not contain such evidence.

Some confusion may have arisen among readers because we drew an additional distinction in our discussion: We proposed that the microbial system within the CRB may be not only (chemo)lithoautotrophic, but also independent from photosynthesis, which is not quite the same thing. Sulphide- and methane-oxidizing communities at deep-sea hydrothermal vents are chemolithoautotrophic but depend on photosynthesis because they require O₂ as an electron acceptor. Many chemolithoautotrophic microorganisms can be found in anaerobic sediments, but the community as a whole—and ultimately, the lithoautotroph population—is usually dependent on degradation of organic matter.

All of the environments described in the references cited by Madsen are profoundly affected by photosynthetic processes. They contain photosynthetic mats, organic-rich sediments, or oxygenated water. It seems a reasonable hypothesis that geochemically produced H₂ may contribute electrons to microorganisms in some of these locations; however, it was not demonstrated. We suspect that chemolithoautotrophic primary production is widespread in the subsurface. Lovley and Chapelle suggest that the evidence in our report may be insufficient to demonstrate a chemolithoautotrophy-based system. Any of our points of evidence alone is not sufficient, but we believe that, taken together, they provide a strong case. Because of the inherent difficulty in sampling the subsurface, indirect observations and simulations must be used. Our report is an initial study and not the final word on this system. We address each paragraph of the comment by Lovley and Chapelle, in order.

The pH of our experiment [figure 4 of our report (1)] is below that of the aquifers; however, H₂ production does occur in the in situ pH range and is typically 20 to 85% of that found at pH 6 in vitro (3). We agree that our study would have been strengthened by data from experiments at higher pH, although other variables also determine H₂ production (3). The experimental survey of H₂ production in different rocks was done at pH 6 because that was found, in initial experiments, to be the optimal pH for H₂ evolution.

Dissolved inorganic C (DIC) depleted in ¹³C by autotrophic methanogenesis has been reported in organic matter-rich sediments, but not in close relation with dissolved inorganic C (DIC) depletion as we observed. If the methane formation had been associated with heterotrophic H₂ production, DIC would have been produced, not consumed. [The unit label in the axis label for figure 3b in our report (1) was incorrect: DIC was reported in mmol/L, not in mg/L.]

The high-sulfate zones were not detailed in our report because we as yet have no further information about them. The isotopic evidence supports autotrophy in the (predominant) low-sulfate aquifers. However, the ¹³C-DIC depletion in some high-sulfate waters is so great as to suggest anaerobic methane oxidation—a phenomenon observed several times in the field, but not demonstrated in the laboratory. Alternatively, it could indicate a volcanic, rather than atmospheric, source of C (the source of the S is also unknown, but could be volcanic). The nature of processes occurring in the high-sulfate waters remains unknown.

The high H₂ concentrations show that it is present in sufficient quantities to provide an electron-donor for microbial metabolism, not necessarily that H₂ comes from an abiological source. However, we also demonstrate an abiological source (basalt weathering) that could explain this observation.

The cultural enumeration data are a contributing line of evidence that demonstrates that the microorganisms we postulate are in fact present in the ground waters. The observation that autotrophs outnumbered the heterotrophs (within the inherent limitations of the technique) does separate the CRB aquifers from sedimentary systems we have observed and from other reports (4). We have also demonstrated that basalt can serve as the sole electron donor for microbial growth and respiration in vitro (1, 3).

There are clearly many avenues left to explore in understanding the CRB system. We believe that it may become an important model for microbial ecology and are pleased that our report has stimulated discussion about this topic.

Todd Stevens
James McKinley
Earth Systems Science Department,
Pacific Northwest National Laboratory,
Richland, WA 99352, USA

REFERENCES

23 January 1996; accepted 26 February 1996
Editor's Summary

This copy is for your personal, non-commercial use only.

**Article Tools**
Visit the online version of this article to access the personalization and article tools:
[http://science.sciencemag.org/content/272/5263/896.4.citation](http://science.sciencemag.org/content/272/5263/896.4.citation)

**Permissions**
Obtain information about reproducing this article:
[http://www.sciencemag.org/about/permissions.dtl](http://www.sciencemag.org/about/permissions.dtl)