For High-Fidelity PCR

Pfu Beats Taq
Every Time!

Pfu polymerase
for accurate
PCR!

Call Stratagene
Or your Stratagene distributor
for the complete picture...

United States:
Stratagene Headquarters
800-424-4444
INTERNET MAIL:
techservices@stratagene.com

AUSTRALIA: 1300-322-304
AUSTRIA: 1 5332366
BRASIL: 11 3957 3733
CANADA: 905 713 7201
DENMARK: 86010555
FRANCE: 1 34 62 54 24
GERMANY: 01030-840911
HONG KONG: 5795499
ISRAEL: 3 7921857
ITALY: 25031249
JAPAN: (03) 3680 4816 or 03 3680 3790
KOREA: 2 5560311
MALAYSIA: 3723188
THE NETHERLANDS: 33 495094
NEW ZEALAND: 9 443 5967
NORWAY: 2271503
PORTUGAL: 1 4581641
RC: 2 694 0906 or 2 770 2215
SINGAPORE: 3703899
SPAIN: 1 729 03 33
SWEDEN: 1 880 6045
SWITZERLAND: 364106
THAILAND: 25390611
UNITED KINGDOM: 0003 565370

1 Patent Pending
2 Purchase of these enzymes is accom-
panied by a license to use them in the
Polymerase Chain Reaction (PCR) pro-
cess in conjunction with an authorized
Thermal Cycler. Stratagene PCR prod-
ucts are sold under licensing arrange-
ments withRoche Molecular Systems,
Inc., Hoffmann-La Roche Ltd. and
The Perkin-Elmer Corporation.

Accuracy* of PCR
Polymerase

Accuracy (x10^-5)

Enzyme

NATIVE Pfu DNA POLYMERASE
Catalog #600135 (100U), #600136 (500U)

RECOMBINANT Pfu DNA POLYMERASE
Catalog #600153 (100U), #600154 (500U), #600159 (1000)

Circle No. 40 on Readers’ Service Card
Introducing AmpliTaq Gold™

For PCR performance with higher yield, better specificity and more reliable results, discover AmpliTaq Gold™.

This new version of AmpliTaq® DNA Polymerase provides the specificity of Hot Start PCR, without all the extra steps. In most cases, you can substitute AmpliTaq Gold directly in existing PCR amplification protocols—without re-optimization.

You'll find AmpliTaq Gold saves time and money with dramatically lower drop-out rates, improved specificity, and easier multiplexing.

It also gives you consistently better PCR results. Because AmpliTaq Gold remains inactive until heated, conditions that lead to primer-dimer formation and mispriming are eliminated.

And of course, you have the continued assurance of knowing that AmpliTaq Gold is backed by PE Applied Biosystems’ exclusive PCR Performance Guarantee.

So discover AmpliTaq Gold, and discover high performance PCR. To request information, call 1-800-327-3002. Outside the U.S. and Canada, contact your local PE Applied Biosystems representative. On the Internet, visit our homepage at http://www.ampliatacgold.com, or e-mail pebio@perkin-elmer.com.

PE Applied Biosystems

Europe: Langen, Germany Tel: 49-6103 706 301 Fax: 49-6103 706 310
Japan: Tokyo, Japan Tel: (0473) 80-8381 Fax: (0473) 80-8505
Latin America: Mexico City, Mexico Tel: 52-5-651-7077 Fax: 52-5-589-6223
Australia: Melbourne, Australia, Tel. (03) 9212-8485 Fax: (03) 9212-8502

Perkin-Elmer PCR reagents are developed and manufactured by Roche Molecular Systems, Inc., Branchburg, New Jersey, U.S.A.

AmpliTaq Gold is a trademark and AmpliTaq is a registered trademark of Roche Molecular Systems, Inc. The PCR process is covered by patents owned by Hoffmann-La Roche, Inc. and Hoffmann-La Roche Ltd. PE Applied Biosystems is a trademark and PE/Elmer is a registered trademark of The Perkin-Elmer Corporation. The Perkin-Elmer Corporation is ISO 9001 certified.
The Ares-Serono Foundation Fellowships in Biomedicine

1997 Award Announcement

FELLOWSHIPS IN IMMUNOLOGY

Two Fellowships will be awarded by The Ares-Serono Foundation for postdoctoral training pertaining to studies in the field of immunology. The grants are awarded based on an international competition. The applications submitted should focus on research areas of neuroimmunology and autoimmunity. Fellowships may be held at any academic or research institution with appropriate degree programs.

Fellowship Terms
- Full-time postdoctoral training
- 2 years of support
- USD 40,000 annual grant towards expenses for postdoctoral training

Eligibility
- Preference will be given to candidates applying for their first postdoctoral training
- Applicants must have completed his/her PhD or MD degree no later than the start date of the fellowship
- Ability to communicate fluently in English (verbal and written)

Schedule
Application deadline: February 28th, 1997
Grants announced: June 30th, 1997
Fellowships start: October 1997

For the Application Form and Eligibility Guidelines, please contact:
Maria Grazia Cali
Secretary of the Board
PO Box 7228
00100 Rome (Nomentano), Italy
Fax +39-6-70384577
Internet address: http://www.serono.ch
E-mail address: ares-serono.foundation@pn.itnet.it
Sponsored 1997 Scientific Workshops

Paracrine Mechanisms in Female Reproductive Function
Seville, Spain
June 27-28, 1997

Scientific Organizers
P. Bouchard (F)
Hôpital St. Antoine, Paris, France
A. Pellicer (E)
Istituto Valenciano de Infertilidad, Valencia, Spain
F. Petraglia (I)
Università di Pisa, Italy

Developmental Endocrinology
Centre Médical Universitaire, Geneva, Switzerland
September 18-20, 1997

Scientific Organizers
P.C. Sizonenko (CH)
Université de Genève, Switzerland
M. Aubert (CH)
Université de Genève, Switzerland

HIV-1 and Gametes
University of Siena "Certosa di Pontignano", Siena, Italy
October 15-17, 1997

Scientific Organizer
B. Baccetti (I)
Università di Siena, Italy

For Further Information

Mailing Address:
M.G. Cali, Secretary of the Board, P.O. Box 7228, 00100 Rome (Nomentano) Italy
Tel.: +39-6-70384 694/506/721 - Fax: +39-6-70384 577

E-mail Address:
ares-serono.foundation@pn.itnet.it

Internet Address:
http://www.serono.ch
NEWS & COMMENT

Green Education Under Fire 1828
Gibbons Warns of Decline in R&D 1830
Political Sails Are Up for Revamping DOE 1831
U.K.: Lab Privatization Program in Tatters 1831
Funding Inequality Threatens Novel Bioscience Program 1832
Collaboration Across Continents 1833

RESEARCH NEWS

Can Chip Devices Keep Shrinking? 1834
Fly Sex Drive Traced to fra Gene 1836
Could Stellar Ash Revise Cosmic Ages? 1837
Endocrine Disrupters: Scientists Angle for Answers 1837
Dissecting How Presenilins Function—and Malfunction 1838
Do-It-Yourself Supercomputers 1840
Homo erectus in Java: A 250,000-Year Anachronism 1841
Unscrambling Time in the Fossil Record 1842

PERSPECTIVES

Learning Rediscovered 1849
E. Bates and J. Elman
Crossing the Hydrophobic Barrier: Insertion of Membrane Proteins 1850
D. M. Engelman
Plasticity of a Different Feather? 1851
A. J. Doupe
The Metal-Insulator Transition in Correlated Disordered Systems 1853
E. Abrahams and G. Kotliar

ARTICLE

Functions of Ceramide in Coordinating Cellular Responses to Stress 1855
Y. A. Hannun

RESEARCH ARTICLE

Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore 1859
L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, J. E. Gouaux

REPORTS

Forcing of Atlantic Equatorial and Subpolar Millennial Cycles by Precession 1867
A. McIntyre and B. Molfino

DEPARTMENTS

THIS WEEK IN SCIENCE 1813
EDITORIAL 1819
Preparing Children for the Future
LETTERS 1821
Plagiarism in China: C. Cao • U.S.-Chinese Collaborations: P. R. Renne • Paleoindians in the Brazilian Amazon: S. Fiedel; T. D. Dillehay; B. J. Meggers; A. C. Roosevelt

SCIENCESCOPE 1827

RANDOM SAMPLES 1843
Faculty Ambivalence on Affirmative Action • More Support for Black Hole-Quasar Link • Purple Business • NSF Creates Layperson Award • Under sized Protein, Oversized Heart • Deasbestosization • U.K. Genetics Group Established

BOOK REVIEWS 1846
The Life and Legacy of G. I. Taylor, reviewed by C. Wunsch • 3 K. S. Dodelson • The Chaperonins, R. I. Morimoto • Vignettes • Browsings

PRODUCTS & MATERIALS 1935

AAAS Board of Directors
Rita R. Colwell Retiring President, Chairman
Jane Lubchenco President
Mildred S. Dresselhaus President-elect
Sheila Jasanoff William T. Golden Treasurer Richard S. Nicholson Executive Officer
William J. Abelson

SCIENCE (ISSN 0036-8075) is published weekly on Friday, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005. Periodicals Mail postage (publication No. 484460) paid at Washington, DC, and additional mailing offices. Copyright © 1996 by the American Association for the Advancement of Science. The title SCIENCE is a registered trademark of the AAAS. Domestic individual membership and subscription (51 issues): $102 ($55 allocated to subscription). Domestic institutional subscription (51 issues): $250. Foreign postage extra: Mexico, Caribbean (surface mail) $55; other countries (air assist delivery) $90. First class, airmail, student, and emeritus rates on request. Canadian rates with GST available upon request, GST #1284 88122. Printed in the U.S.A.
Snapshot of the magnetic field inside Earth’s core simulated by a geodynamo model. Magnetic lines of force are gold where they are inside, or blue where they are outside, the solid inner core. The Earth’s axis of rotation is vertical in this image. The field is directed inward at the inner core north pole (top) and outward at the south pole (bottom). The maximum magnetic intensity is about 30 millitesla. See page 1887 and a related report on page 1883. [Image: G. A. Glatzmaier and P. H. Roberts]
Introducing BioLite™: A luminescent labeling and detection assay kit for the quantification of cells, particles, and microorganisms.

BioLite™, a long-lived “glow” type signal assay kit, allows you to carry out high throughput cell adhesion, chemotactic or infection studies in the microplate format. With BioLite, you simply pre-label your cells, particles, or microorganisms of interest using the label provided. Perform your assay; wash any non-adherent, non-bound, or non-invasive labeled cells or microorganisms free; add the BioLite detection reagent; and measure the produced signal.

BioLite labeling is rapid, permanent, cell-type independent, and does not require long incubation times. The assay simplicity and high detection sensitivity with BioLite enables the use of microplate technology for easy handling and high throughput analysis. And, with a half-life of several hours, BioLite allows you to prepare multiple microplates at the same time for compound screening assays or to measure plates at multiple time points.

Combined with the TopCount™ microplate scintillation and luminescence counter, BioLite assays can be performed in either the 96- or 384-well microplate format for batch processing of cellular or microbiological assays. TopCount enables you to analyze 12 samples simultaneously. It also provides temperature control and stackers to hold up to 40 microplates.

Switch on BioLite for:
- Rapid, non-isotopic labeling and detection
- Long-lived luminescent signal (half-life of several hours)
- High sensitivity
- A label that binds equally well to all cell types
- A label that does not interfere with cell adhesion kinetics or membrane receptor function

1Patent pending

Packard Instrument Company, 800 Research Parkway, Meriden, CT 06450 U.S.A.
Tel: 203-238-2351 Toll Free: 1-800-323-1891 FAX: 203-639-2172
Web Site: http://www.packardinst.com Email: webmaster@packardinst.com

Packard International Offices:
Australia, Mt Waverley 61-3-9543-4266; Austria, Vienna 43-1-2702504; Belgium, Brussels 32-2-4668210; Canada, Ontario 1-800-387-9559; Central Europe, Schwadorf, Aus. 43 456 2230 015; Denmark, Greve 45-42909023; France, Rungis (33) 1 46.66.27.75; Germany, Dreieich (49) 6133 385-151; Italy, Milano 39-2-33910796778; Japan, Tokyo 81-3-3866-5850; Netherlands, Groningen 31-50-5413360; Tiltburg (013) 5453900; Russia, Moscow, 7-095-259-9635; Switzerland, Zürich (01) 481 69 44; United Kingdom, Pangbourne, Berks (44) 01734 844981.

Circle No. 26 on Readers’ Service Card
Heinrich events go south?

Heinrich events mark abrupt episodes of discharge of icebergs from the continental ice sheet covering North America during the last glaciation. The climatic causes of these events and whether they are local or hemispheric in scale are not clear. McIntyre and Molfino (p. 1867) show that peaks in abundance of a marine alga in a high-resolution climate record from the equatorial Atlantic Ocean spanning the last 45,000 years are coeval, within age-resolution, of the last several Heinrich events. They suggest that the cycles, which occurred about every 8400 years, are caused ultimately by variations in Earth's orbit.

Zipping around

It was recently shown by Song and Richards that the Earth's inner core is spinning faster than the mantle by about 1° per year. Su et al. (p. 1883), using independent observations of 29 years of seismic waves traveling through the core, suggest that the inner core is indeed rotating faster, perhaps by as much as 3° per year ahead of the mantle. Glatzmaier and Roberts (p. 1887; cover) simulated the geodynamo and find that the inner core's superrotation may be explained by the coupling of the inner core's magnetic field with an eastward-moving thermal wind in the fluid outer core.

Slippery when wet

The cause of the magnitude 7.2 Kobe, Japan, earthquake in January 1995 is unknown. Zhao et al. (p. 1891) developed a tomographic model of the velocity structure of the crust beneath the epicenter and the extended aftershock zone. Their images show that the hypocenter of the earthquake was in a distinctive zone, characterized by low P-wave and S-wave velocities and a high Poisson's ratio, suggestive of the presence of fluids that may have helped facilitate the earthquake.

Quickly ironed out

Following the Big Bang, debris accreted together in the inner solar system to form planetesimals. Lee and Halliday (p. 1876) measured 182W isotopic anomalies in meteorites, which are produced by decay of 182Hf (half-life of 9 million years), to date the accretion and segregation of iron cores (which prefer W relative to Hf) in some of these parent bodies. The tungsten isotopic anomalies of iron meteorites (perhaps representing cores) are similar to anomalies in metal grains in ordinary chondrites (silicate mantle and crust). This result suggests that the parent bodies and their cores formed at the same time and within a few million years of the origin of the solar system.

Fits of forgetfulness

Adult zebra finches are capable of recognizing and remembering songs of other birds, and the duration of the memory varies with song type. Chew et al. (p. 1909; see Perspective by Doupe, p. 1851) monitored neuronal activity in the auditory centers of awake zebra finches while they were presented with various songs. An unexpected finding was that the birds appeared to forget the song only at six narrow windows with durations of 1 to 4 hours during 4 days of testing. These windows marked periods of gene expression and protein synthesis that were required to maintain the longer lasting memories. Thus, it appears that remembering these songs depends on quantized waves of macromolecular synthesis.

Extended damage

After traumatic brain injury, changes in the permeability of neurons to various ions can contribute to the extent of actual damage to neurons. Zhang et al. (p. 1921) show that one part of this change involves the calcium channel known as the NMDA-type glutamate receptor. After neurons have been subjected to traumatic stress, the molecular characteristics of the NMDA receptor change such that the channel becomes more permeable to calcium ions. This influx of calcium ions in turn promotes further neuronal damage.

Tiny test tubes

The inner cavities of carbon nanotubes could be utilized for the controlled production of encapsulated nanostructures and as small test tubes. However, numerous problems remain, such as the controlled filling of the tubes and the activity of the tube walls. Ugarte et al. (p. 1897) studied the filling of nanotubes with a molten silver salt and showed that a minimum tube diameter of about 4 nanometers is required. The decomposition of the silver salt within the tubes to form silver particles leads to high pressures in the tubes and to production of oxidizing gases that erode the tube walls.

Start me up

Expression of cytokines such as interleukin-4 (IL-4) requires several transcription factors, including members of the NF-AT family (nuclear factor of activated T cells), but low levels of cytokine expression in reconstituted systems suggests that unknown proteins act in NF-AT-mediated transcription. Hodge et al. (p. 1903) have now identified a protein, NIP45, that shows little similarity to other known proteins, but that, in combination with the NF-AT protein and c-maf, activated the IL-4 promoter. Transient overexpression of these proteins in B cells led to endogenous production of IL-4.
Go To
http://www.sciencemag.org

Get on The Fast Track...

ScienceOnline

ScienceOnline helps keep you out in front!

- Full-text SCIENCE — on the day of publication, research papers and news articles with hyperlinks from citations to related abstracts in Medline
- ScienceNOW — daily science news briefings
- SCIENCE's Next Wave — a new design, plus new career advice column, an Asian forum, and expanded news section written by young scientists worldwide
- Perspectives — enhanced with links to related research and background information
- SCIENCE Professional Network — career related services, including a powerful new engine to search jobs by discipline, position, organization, and region
- SCIENCE Electronic Marketplace — the latest product information from the world's leading science manufacturers and suppliers, plus hyperlinks to advertiser's web sites
Starting in 1997, only AAAS members will be able to gain access to SCIENCE Online. If you are already a member, upgrade now for just $12. If you are not yet a member, you can still join AAAS and get SCIENCE Online for $12.

Access our online form through the AAAS WWW site:
http://www.aaas.org/membership/meminfo.htm...
Or fill out and mail the coupon below...
Or fax your coupon to us at (202) 842-1065...
Or call (202) 326-6417 to order today.

MEMBERSHIP UPGRADE
☐ YES, I want instant access to SCIENCE Online. Please upgrade my membership to include the full-text SCIENCE Online at the special introductory rate of only $12. (Offer good through 12/31/96. Access to SCIENCE Online is for one full year.)

NEW MEMBERSHIP WITH SCIENCE ONLINE
☐ Please sign me up for AAAS membership and the special introductory rate for the full-text of SCIENCE Online. Membership includes 51 weekly issues of SCIENCE and one-year access to SCIENCE Online:

<table>
<thead>
<tr>
<th>U.S.</th>
<th>Europe, Asia, Pacific & Other</th>
<th>Canada</th>
<th>Mexico/Caribbean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Member</td>
<td>☐ $114</td>
<td>☐ $204</td>
<td>☐ $179.99</td>
</tr>
<tr>
<td>Postdoctoral/Resident</td>
<td>☐ $89</td>
<td>☐ $179</td>
<td>☐ $153.24</td>
</tr>
<tr>
<td>Full-Time Student</td>
<td>☐ $67</td>
<td>☐ $157</td>
<td>☐ $129.70</td>
</tr>
</tbody>
</table>

NEW MEMBERSHIP WITHOUT SCIENCE ONLINE
☐ Please sign me up for AAAS membership. Membership includes 51 weekly issues of SCIENCE.

<table>
<thead>
<tr>
<th>U.S.</th>
<th>Europe, Asia, Pacific & Other</th>
<th>Canada</th>
<th>Mexico/Caribbean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Member</td>
<td>☐ $102</td>
<td>☐ $192</td>
<td>☐ $167.99</td>
</tr>
<tr>
<td>Postdoctoral/Resident</td>
<td>☐ $77</td>
<td>☐ $167</td>
<td>☐ $141.24</td>
</tr>
<tr>
<td>Full-Time Student</td>
<td>☐ $55</td>
<td>☐ $145</td>
<td>☐ $117.70</td>
</tr>
</tbody>
</table>

Rates are valid until 12/31/96. $55 allocated to SCIENCE. Canadian rate includes GST #125488122. Please allow six weeks for receipt of first issue of Science. International exchange rates for credit card transactions are set by your credit card company, not by AAAS.

☐ Check enclosed (payable to “AAAS”) for: $________
☐ Charge $__________ to my: ☐ Visa ☐ MasterCard ☐ American Express

CARD # ___________ EXP. DATE ___________

SIGNATURE

NAME

MEMBERSHIP ID # (IF CURRENT MEMBER)

INSTITUTION

STREET ADDRESS

CITY STATE/COUNTRY ZIP/POSTAL CODE

MAIL TO:
AAAS—Membership Services
1200 New York Avenue, NW
Washington, DC 20005

OR FAX TO:
(202) 842-1065

Join thousands of your AAAS colleagues and turn to SCIENCE Online to research your interest areas right at your desk.

SCIENCE ONLINE
http://www.sciencemag.org

Circle No. 22 on Readers' Service Card
One System... One Solution

INCREASED SEQUENCING PRODUCTIVITY
DNA sequencing productivity immediately goes up when you add a LI-COR infrared system to your lab! Read lengths extend to 800-1200 bases per sample with superior accuracy.

HIGH GENETIC ANALYSIS THROUGHPUT
For genotyping or forensics, LI-COR systems deliver up to 1800 genotypes per day (over 5000 on an expanded system!) Plus, results are presented in true autoradiogram format for highest accuracy.

Easy-To-Use
LI-COR systems are ideal for multi-user labs. Dedicated operators are not needed because anyone can learn to use the system.

Economical
LI-COR systems are also a better value for both sequencing and genetic analysis. Affordable system prices, outstanding reliability and more sequencing data per sample make these infrared systems less expensive to own and operate.

Find out how easily LI-COR systems integrate into multi-user labs!
Ask for our new application note series.
Create a bibliography in one step:

With the new EndNote Add-in (included in EndNote Plus 2.1 or higher), you simply choose Format Bibliography from Word’s Tools menu and EndNote will create your bibliography instantly! You don’t have to close the document, scan it, or save a formatted copy under a different name.

Keep track of only one document:

When formatting bibliographies, there’s no need to keep track of two separate versions of the same document (i.e., your working copy and the formatted copy).

Revise the same document as many times as you need:

The EndNote Add-in has no problem with last-minute revisions that you’ve made to your document. Each time you choose Format Bibliography, the EndNote Add-in will automatically update your citations and bibliography in your document.

Available for Macintosh and now for Windows!

- Speedy 32-bit processing
- Works under Windows 3.1, Windows 95, Windows NT and Macintosh
- Works with Microsoft Word 6 and 7 (Windows)
- Works with Macintosh

EndNote is compatible with WordPerfect and other word processors (no Add-in)
- Includes bibliographic styles for more than 300 journals
- EndLink (sold separately) imports from more than 100 online databases and CD-ROMs

"If you use Word and you do scholarly publishing, you need EndNote Plus. Recommended."
— Jerry Pournelle, Byte, September 1996

"...the most powerful citation manager you can find, short of a personal librarian."
— PC Magazine, December 1995

"Despite its power, EndNote Plus remains surprisingly easy to learn and use."
— Macworld, April 1995

800 Jones Street Berkeley California 94710 USA
Phone 800.554.3049 or 510.559.8592 Fax 510.559.8683
E-mail: info@niles.com World Wide Web: http://www.niles.com
Australia (+61) 66.58.3674 Germany (+49) (0) 69.970841.17
Japan (+81) 3.3384.8861 Scandinavia (+46) 481.511.23 UK (+44) (0) 1865.784800

Reference Manager is a registered trademark of Institute for Scientific Information. EndNote is a registered trademark of Niles & Associates, Inc.
Would you rather trust your results to an unpurified peptide, or to one that’s guaranteed pure?

No, that’s not a trick question. Because — for about what you pay for a crude product from other suppliers — you can get a fully characterized, guaranteed >70% pure custom peptide from Genosys.

You’ll get proof of performance to convince even the most hardened skeptic: mass spectral analysis for composition, and HPLC verification of purity. Plus a cast-in-stone, 100% satisfaction guarantee.

Of course, you can also choose higher levels of purity to suit your research, as well as the exact quantity you need. Along with just about any modification you can think of: MAPS, biotin, N-acetylation, C-amidation, phosphorylation, D-amino acids, or KLH / BSA conjugation. Hassle-free antisera services, too. And if you’re doing mapping studies, you’ll want to check out our time-saving SPOTS™ custom peptide array system.

Skeptical? Call today to discuss your requirements. To erase all doubts, just place an order.
Plagiarism in China

I am glad that the Chinese scientific community finally succeeded in disclosing a case of plagiarism (News & Comment, 18 Oct., p. 337). The case was an open secret, of which I became aware when I was conducting research in Beijing in early 1996. I talked with the two authors who disclosed the case in the *Journal of Dialectics of Nature*. From what I learned then, it appears that there was pressure not to publicly discuss the case. The article was first submitted to another journal for publication. I was told later by one of the authors that three journals declined to publish it.

I applaud the Chinese scientists for adhering to their upright attitude toward scientific research and, most important, to their independence from interference.

Cong Cao
Department of Sociology, Columbia University, New York, NY 10025, USA
E-mail: cc61@columbia.edu

U.S.-Chinese Collaborations

Jeffrey Mervis, in his article “Both sides point finger in tiff over China dig” (News & Comment, 1 Nov., p. 715) about a conflict between Chinese and American geoscientists working in western China, reports an unfortunate occurrence, from which readers might conclude that systemic impropriety on the part of Chinese scientists and institutions was to blame.

I do not presume to know the details of the incident, but I emphatically urge caution against generalizing that such incidents are characteristic of fieldwork in China or that they in any way typify relations between U.S. and Chinese scientists. I spent a month in China doing fieldwork at the same time (and, in fact, on a very similar subject) as Lucas, Geissman, and Molina-Garza, and I was fully and generously hosted by my Chinese colleagues. I did not spend one yuan. Both the individual scientists and the institutions I worked with were extremely gracious, and the trip was scientifically productive and enjoyable.

It would be wrong to impugn the Chinese scientific community on the basis of this unfortunate incident. Let us hope that an amicable and mutually satisfying resolution to this dispute can be found and that ongoing and future U.S.-Chinese collaborations will not be imperiled by escalation into inappropriate venues.

Paul R. Renne
Director, Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA
E-mail: prenne@berkeley.edu

Paleoindians in the Brazilian Amazon

Anna C. Roosevelt et al. (Article, 19 Apr., p. 373) present results of excavation of Caverna da Pedra Pintada at Monte Alegre, an important early site in the Brazilian Amazon. A valuable critical review of other putatively pre-Clovis age [earlier than about 11,200 carbon-14 years before the present (B.P.)] South American sites is buried in the footnotes of their article. Ironically, after questioning the validity of these dates, Roosevelt et al. advance the culture disclosed at Monte Alegre as a Clovis contemporary, with the stated implication that North American Clovis was not “the sole source” of human migration into South America: “Clovis is evidently just one of several regional traditions.”
However, they state, lithic manufacture techniques of the Monte Alegre culture "resemble those of other Paleoindian and upper Paleolithic cultures." Obviously, the South American Paleoindians must have descended from some North American culture which was not initially adapted to tropical forest environments and which was ultimately derived from Northeast Asia. Clovis, ubiquitous in North America and attested as far south as Costa Rica (1), is the best candidate.

The central question is, Is the Monte Alegre culture really as old as Clovis? If not, was there enough intervening time for a Clovis-derived culture to traverse 5000 miles to Amazonia and be transformed there into a locally adapted, forest-foraging community, manufacturing small-stemmed points?

On the basis of characteristics of the lithic industry, Roosevelt et al. divide the Monte Alegre "Paleoindian" occupation of Caverna da Pedra Pintada into three sequential phases—Initial, Early, and Late—and 56 radiocarbon dates are assigned to one phase or another. In fact, with few exceptions, the dates associated with all phases are indistinguishable, generally falling in the interval of 10,600 to 10,100 B.P. The most precise dates (50- to 70-year sigmas) for the Initial occupation actually overlap with four of the Early dates, around 10,600 to 10,350 years B.P. The four dates that appear to fall within the Clovis range (11,145 to 10,875 B.P.) have larger standard errors (135 to 310 years) and are most plausibly interpreted as statistical outliers [as suggested by C. Vance Haynes, Ken Tankersley, and Dena Dina cause (A. Gibbons, News, 19 Apr., p. 346)].

Previous discussion of the chronological relationship of Monte Alegre and Clovis has not taken into account the recent evidence of major carbon-14 anomalies in this period. Roosevelt et al., noting that precise calibration of radiocarbon dates in this range is not yet feasible, present their dates in uncalibrated form, while parenthetically observing that the estimated calendrical dates may range from about 14,200 to 10,500 B.P. Data presented by Edwards et al. (2) suggest that there is a radiocarbon "plateau" extending from about 12,300 to 11,000 calendrical years ago, when atmospheric ratios of carbon-14 to carbon-12 dropped by 15%. Apparent radiocarbon ages of about 10,400 to 10,000 B.P. fall somewhere within this actual span, but cannot be readily distinguished or pinpointed. This might explain why the dates for the Monte Alegre Initial, Early, and Late phases appear contemporaneous. In contrast, Clovis-associated dates of about 11,200 B.P. calibrate to about 13,000 to 13,500 calendrical years ago. Thus, there may have been an interval of anywhere from 700 to 2000 years between Clovis and the Initial phase of Monte Alegre. Because the Clovis culture seems to have exploded across the whole of North America and into Central America within the space of a few hundred years, this seems to provide enough time for their descendants to have reached Amazonia and to have adapted to local environments.

Stuart Fiedel
John M. Iner Associates,
5250 Cherokee Avenue, Suite 410,
Alexandria, VA 22312, USA

References

For more than 25 years, Brazilian archaeologists have been documenting the presence of late Pleistocene people (11,300 to 10,000 years B.P.) at several sites in the eastern tropical lowlands of South America (1). Roosevelt et al. state this, but appear to broadly dismiss these sites as uncertain human localities. Several sites are far less dubious than they imply. In short, Roosevelt et al.'s finding is not unique; it merely adds
Roosevelt et al. jeopardize the credibility of their data by saying they have produced evidence that "changes understanding of the migrations and ecological adaptations of early foragers." It has long been recognized that the Paleoindian diet consisted mainly of plants and small animals (1). South American lithic assemblages dating from before 11,000 years B.P. are numerous, diverse, and distinct from Clovis (2). There is no evidence that the neotropical rainforest was uninhabitable before the advent of agriculture, a moot issue because paleoenvironmental data increasingly support more open vegetation in central Amazonia before about 8000 years B.P. (3).

The features described for Pedra Pintada by Roosevelt et al.—including lithics, hearths, plant remains, modern terrestrial and aquatic fauna, and rock art—are also found in the earliest levels of Boquete Rock Shelter in Minas Gerais, also dated at about 11,000 years B.P. (4). The excavations at Pedra Pintada expand the spatial distribution of this early cultural tradition.

Betty J. Meggers
Department of Anthropology,
National Museum of Natural History,
Smithsonian Institution,
Washington, DC 20560, USA

Response: The preceding letter writers represent opposite views of the peopling of the Americas. Feidel suggests that Clovis big-game hunters dating to about 11,200 years B.P. were the earliest Paleoindians and ancestors of all others (1). Dillehay and Meggers suggest that there were both Clovis-age and pre-Clovis-age human occupations in South America (2).

We took a middle ground in our article. Although we found all pre-Clovis South American sites problematic, we found (p. 383) evidence for occupations of the same age as Clovis and Folsom, but with different cultures and ecological adaptations, which is not compatible with Clovis as the sole ancestor. The cave at Monte Alegre in Brazil is in the Amazon's equatorial lowlands, a region which many researchers had thought uninhabitable by primary hunter-gatherers (3).

Feidel, ignoring other eastern South American sites, argues against the contemporaneity of the Amazonian culture with Clovis. He suggests that Monte Alegre is 700 to 2000 years younger and could be its descendant. This age gap, however, is based on a statistically questionable comparison favoring a greater age for Clovis than for the Amazonian culture.

Feidel drops as outliers the four earliest Amazonian dates between 11,145 and 10,875 years B.P. because of their "large" standard deviations, from 135 to 310 years.

Would you like to save one hour in histidine-tagged protein purification?
To load, purify and elute in 15 minutes? Now it's possible—time after time.

HiTrap kit: saving an hour couldn't be simpler

The HiTrap™ Kit presents you with a solution so simple it works with a syringe. Inside the kit is all you'll need for up to ten affinity purification runs: pre-packed cartridges, ready-made stock solutions, a protocol that's easy to follow, and, of course, a syringe.

You'll get high purity recombinant proteins as the kit lets you use the well-known binding of poly(histidine) sequences to immobilized nickel. What's more, it saves you the effort of weighing out buffer salts.

Molecular biologists have been purifying recombinant proteins with Pharmacia Biotech media from the very beginning. Call us at 1 (800) 526 3593 from the USA, +81 (0)3 3492 6949 from Japan or +46 (0) 18 16 50 11 from Europe and the rest of the world (or meet us on the Internet at http://www.biotech.pharmacia.se). Ask about the kit that saves an hour.
and accepts eight “more precise” dates with errors of less than 80 years, which are between about 10,600 and 10,400 years B.P. He states that the dates of the different Amazonian periods are the same, but, on the contrary, they are significantly different (n = 30, t = 66.27, P < 0.000001), according to Ward and Wilson’s test of contemporaneity (4), as are the lithic frequencies (n = 30,420; $\chi^2 = 9558.59$, df, 12; $P < 0.00001$).

Along with Tankersley, Dincauze, and Haynes, whom he cites, Feidel does not acknowledge that the oft-quoted age of Clovis of about 11,200 years B.P. is based on a small selection of early outlier dates with a much larger standard error range than that of the Amazonian dates, so dropping only the Amazonian dates because of their “large” errors applies a different standard for North and South American dates.

Accepted Clovis dates of 11,200 years B.P. or earlier have errors of from 200 to 600 years, with one exception (5). Dates with errors of 100 years or less are much younger, from 10,980 to 10,600 years B.P. (a charcoal date with inherent age), similar to those in the Folsom range; the only Clovis date with an error under 80 years is 10,840 years B.P. ± 70 years (SMU-42, also a charcoal date). These significantly different older and younger Clovis date sets are not from different stratigraphic contexts within sites, whereas the early Amazonian dates are. The only apparent difference is that the earlier dates were run primarily on problematic samples of inadequate size and questionable human association, or with inherent or geological carbon effects (5, 6).

Calibrating dates to correct for changes in atmospheric carbon isotopes does not change the picture (5, 7). Although Feidel gives a calibrated range of 13,500 to 13,000 calendar years ago for Clovis, that is not the calibration for the accepted age-range of Clovis, which is 11,200 to 10,900 carbon-14 years B.P. and calibrates between 13,000 and 12,800 calendar years ago. The earliest Monte Alegre calibrated dates with “large” errors are 13,054 to 12,799 calendar years ago, compared with 13,107 to 12,728 calendar years ago for Clovis dates with comparable errors. Monte Alegre dates with errors under 80 years begin at 12,465 calendar years ago, compared with the single Clovis date of that precision, 12,766 calendar years ago (another charcoal date with inherent age).

Although Feidel points out that calibrations of the later Amazonian radiocarbon dates overlap because of isotope plateaus, he does not mention that this also applies to Clovis and Folsom and that the large errors of pre–11,000 years B.P. Clovis dates give their two-standard-deviation calibrated range more overlap with the later Amazonian dates than the earliest Amazonian dates have with them. Calibration shows no gap of 700 to 2000 years between Clovis and Monte Alegre.

As for the Clovis migration, there are no dated Pleistocene sites related to Clovis in Costa Rica, Panama, or northern South America, as we pointed out (p. 383). Who, then, were the ancestors? Given the evidence for open-water fishing at Monte Alegre, they could have been coastal people who traveled the often-suggested route along the now-submerged Pleistocene seacoasts of the Pacific. Aided by coastal resources and water craft, they could have moved south more rapidly than those on foot in the interior.

Dillehay essentially restates our conclusions (pp. 374, 382) about Brazilian sites dated at about 11,000 years B.P., but says that the dates of the sites are more certain than we stated. As we noted, however, even after 25 years, essential data (radiocarbon dates with standard errors, sample materials, and levels; lab numbers; geochronal and stratigraphic context; lithic drawings and

Attention Clinical Researchers

Grant Program

Molecular Devices Corporation offers a limited number of equipment grants to both U.S. and International non-profit institutions performing clinical research. The intent of this grant program is to provide researchers access to the Cytosensor® Microphysiometer technology at a substantially reduced cost, thereby enabling them to make novel discoveries using this System, with the ultimate goal of publication.

Briefly, the Cytosensor System has been used over the last 4 years as a powerful research tool for studying cell physiology, receptor activation and signal transduction; it has been shown to be particularly useful for drug discovery and immunological research. In the area of clinical research, the Cytosensor System has been used in the analysis of clinical samples from patients with diseases associated with alteration in signal transduction, analysis of biopsy samples from B-lymphoma patients, analysis of mechanistic changes associated with cystic fibrosis and investigation of cardiac ischemic conditioning. Molecular Devices is looking for users to expand this research area, particularly using patient samples associated with (but not limited to) disease states which involve alterations in G-protein coupled receptors, G proteins themselves, or in the signal transduction pathway.

For a comprehensive package including guidelines for grant submittal, scientific publications, application notes and a reference guide, please contact:

Molecular Devices Corp.
1311 Orleans Drive
Sunnyvale, CA 94089
PH: 408-747-3545
FX: 408-747-3602

Circle No. 32 on Readers’ Service Card

Circle No. 16 on Readers’ Service Card
Forests

References and Notes

Indeed, we disagree. The other idea put forth by Meggers, that there are numerous South American cultures distinct from Clovis that have been dated as older than 11,000 years B.P., is also much debated, as we discussed (p. 383) and as Feidel’s letter indicates. Finally, Meggers’s statement that the Boquete site is similar to Pedra Pintada mirrors our assessment (pp. 382–383) of such central Brazilian sites. However, as we pointed out, this is an arid upland area, so the sites could not resolve the long-standing questions about early human occupation of equatorial lowland rainforests (9).

Anna C. Roosevelt
Department of Anthropology,
Field Museum of Natural History,
Chicago, IL 60605-2496, USA and
University of Illinois,
Chicago, IL 60607, USA

References and Notes

3. That the central Amazon was already a rainforest at the time is shown by palynological data cited by P. Colinaux et al. [Science 274, 85 (1996)] and data in our article (pp. 379–381) showing tropical forest species with stable carbon isotope ratios of closed canopy tropical rainforest, carbon-13/12 isotope ratios of −27 to −35 per mil, corrected for seed fractionation [L. L. Tieszen, J. Archaeol. Sci. 18, 227 (1991)], not of open forest or savanna.
6. The Clovis site (Blackwater Draw) samples were non-cultural pond plants from sand at upwelling artesian springs in contact with geological carbon sources [J. J. Heister, Blackwater Locality No. 1: A stratified early man site in eastern New Mexico (Fort Gurwin Research Center, Southern Methodist University, Dallas, TX 1972)]. Water plants in the southwest are dated too old because they incorporate geological carbon metabolically [P. E. Damon, C. V. Haynes, A. Long, Radiocarbon 6, 91 (1964)]. The Lehner, Lange-Ferguson, and Murray Springs samples were on charcoal, which has inherent age (p. 383) of about 300 years, to judge from the difference between high-precision bone amino acid and charcoal dates from Clovis (9) and Folsom (J. Hofman, J. Field Archaeol. 22, 421 (1995)) sites. Bone dated to earlier (continued on page 1934)
QIAGEN, the leader in nucleic acid purification, now brings the same commitment to quality, service, and innovation to a new line of licensed products for PCR.

Each is developed with your needs in mind:
- robust PCR performance
- minimal reaction optimization
- guaranteed lot-to-lot reproducibility

Now sample preparation, PCR amplification, and PCR product purification are all supported by the exceptional QIAGEN quality and expert service that you know and trust.

QIAGEN — Innovation Working for You
Canada Debates Species Protection Act

As Canada considers adopting its first law to protect endangered species, scientists have become embroiled in a heated debate over whether a bill unveiled this fall will be too weak to protect plants and animals at risk of extinction.

A government advisory panel of biologists, environmentalists, and industry groups began drafting an endangered species act in 1995, and last May released a final proposal. Like the U.S. law, it would prohibit harming species at risk or damaging their nests or dens. But critics point to several gaps that turned up when the Environment Ministry presented the draft bill to Parliament this fall. One is its scope: The law would protect only aquatic species, some migratory birds, and any species on federal lands. That would leave unprotected about 60% of the 254 species listed as at risk, including animals that cross national borders, such as the grizzly bear, peregrine falcon, and burrowing owl. Beyond this, "the big shortcoming," says ecologist David Schindler of the University of Alberta, is that the law wouldn't mandate protection of habitats. Also troubling to scientists is that the bill would give final say on listing species not to the experts, but to the federal Cabinet.

The bill is less aggressive than some would like, says Stewart Elgie of the Sierra Legal Defence Fund, in part because Ottawa wants to leave it to provinces to protect species on their lands. But Elgie and others say only a national law makes sense. More than 200 scientists are expected to sign a letter urging Prime Minister Jean Chretien to strengthen the final bill, which will be hashed out in the coming months.

NTT Labs to Get New Bosses

Japan decided last week to split its national phone company, Nippon Telegraph and Telephone (NTT), into three pieces under a plan that will preserve the company's $2.9 billion research enterprise. But the deal, a compromise between NTT and Japan's Ministry of Posts and Telecommunications (MPT), also means the labs will have to sharpen their sales pitch to the rest of the company and the entire industry.

Under the plan, NTT would be divided into one long-distance and two local-service providers, all fully owned by a new parent holding company. NTT's applied research would be parcelled out among the service providers, while basic research on materials, optoelectronics, and quantum-effect electronics would continue under the holding company.

The ministry had long wanted to break up NTT to foster competition; NTT had resisted, partly because of the possible impact on the labs (Science, 12 April, p. 186). As for the compromise, says NTT spokesperson Atushi Touno, "there won't be any deterioration of NTT's R&D strengths." But Eiichi Tanaka, an MPT policy official, notes that researchers will need to sell their results to the service providers or firms outside the group.

Masao Kawachi, head of research planning for NTT's Basic Research Labs, is cautiously optimistic. "If the holding company plan works well, negative effects could be minimized, but we're not sure just how it will go," Kawachi says. The reorganization must clear several legal hurdles, but could take effect in 1999.

Lawmakers Jostle for Committee Chairs

Members of Congress are winding up their postelection scramble to run committees, and some new faces are appearing on panels affecting science.

The big change in the Senate is the replacement of retiring Appropriations Committee chair Mark Hatfield (R-OR), a fan of biomedical research, by Ted Stevens (R-AK). Meanwhile, James Jeffords (R-VT) is replacing Nancy Kassebaum (R-KA) as chair of the Labor and Human Resources Committee, which hopes to write a new authorization bill for the National Institutes of Health. Dan Coats (R-IN)—an abortion opponent—had indicated he might challenge Jeffords for the job, but in the end, he did not. Capitol Hill scuttlebutt had it that Coats might head a new health subcommittee, but staffers now say no such panel is planned.

Russian Research on the Ropes

Russian science may be in even more trouble than observers have realized, according to new data in a draft report from a Russian government think tank. Russian Science and Technology at a Glance 1996, to be released early next year by the Center for Science Research and Statistics (CSRS) in Moscow, contains eyebrow-raising statistics on everything from the country's scientific brain drain to the decline of federal R&D spending.

Perhaps the biggest surprise is the rate at which Russian scientists are fleeing to other countries or other professions. CSRS estimates that the number of researchers has plummeted nearly 50%—from about 1 million in 1990 to 518,700 in 1995.

That's not necessarily bad for commerce, as more than half the ex-scientists have begun new careers within Russia, and a move of talent to banking and other sectors "is gainful for the economy," says CSRS deputy director Leonid Gokhberg. But there's a dark side, he says: Some of the best scientists have gone abroad, and "less qualified personnel continue to stay in R&D." Indeed, adds Gerson Sher, executive director of the Civilian Research and Development Foundation, a U.S. organization that funds East-West collaborations, the latest figures "suggest a real cataclysm going on there."

Meanwhile, funding of Russian research has dropped off a cliff. The federal R&D budget has declined from roughly $10 billion in 1990 to just $2.45 billion in 1995, or from 2.03% to 0.73% of gross domestic product. "R&D still enjoys a low rank among the government's priorities," says Gokhberg. In addition, while total university enrollment is up, fewer science students are receiving advanced degrees. In 1992, universities awarded more than 29,000 candidate and doctoral degrees in the sciences, but in 1995, only about 14,000.
THE CREDIT CARD YOU’LL CARRY INTO THE NEXT CENTURY

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE
MBNA® PLATINUM PLUS CREDIT CARD

IT’S LIKE NO CREDIT CARD YOU CURRENTLY CARRY.

• A credit line up to $100,000, No Annual Fee, and a low introductory 5.9% Annual Percentage Rate (APR) for cash advance checks and balance transfers*
• Toll-free MBNA Platinum Plus service 24 hours a day
• Platinum Passage—a 24-hour toll-free travel service that guarantees the lowest available published airfare at the time of booking
• Express delivery for card replacement at no additional cost. Free additional card for family and friends.
• Free Lost Card Registry
• Purchase protection against theft or damage
• $1,000,000 Common Carrier Travel Accident Insurance at no additional cost*
• Free Year-End Summary of Charges
• Emergency cash and airline tickets, up to your available credit line, with free express delivery
• Credit line increase decisions in 15 minutes or less

Get the new standard in credit cards.
CALL TOLL-FREE 1-800-457-3714
(Please mention priority code FVHZ when calling)

MBNA® PLATINUM PLUS
THE NEW STANDARD

† The Annual Percentage Rate (APR) for purchases and ATM and Bank cash advances is 15.65%, which may vary. The current promotional APR offer for cash advance checks and balance transfers is 5.9% through your first five statement closing dates, commencing the month after your account is opened. When your minimum monthly payment is not received by the close of the first complete billing cycle following its Payment Due Date, or when the promotional offer expires, whichever occurs first, your APR for both new and outstanding cash advance balances (consisting of cash advance check and balance transfer transactions) will be calculated using the Variable-Rate Information disclosure accompanying your card. The current indexed APR for cash advance checks and balance transfers is 15.65%, which may vary.
Transaction fee for Bank and ATM cash advances: 2% of each cash advance (minimum $2). Transaction fee for credit card cash advance checks: 1% of each cash advance (minimum $2, maximum $10).
Transaction fee for the purchase of wire transfers, money orders, bent, lottery tickets, and casino gambling chips: 2% of each such purchase (minimum $2). Cash advances and balance transfers cannot be used to pay off or pay down any MBNA account. We may allocate your monthly payments to your promotional APR balance(s) before your nonpromotional APR balance(s).
* Certain restrictions apply to these and other benefits described in the Portfolio of Services sent soon after your account is opened.
The information about the costs of the card described in this advertisement is accurate as of 8/96. The information may have changed after that date. To find out what may have changed, call MBNA at 1-800-457-3714. TTY users, call 1-800-433-6262.
Platinum Passage travel services are provided to MBNA Platinum Plus Customers by, and are the responsibility of, an independently owned and operated travel agency. Visa is a federally registered service mark of Visa U.S.A. Inc., used pursuant to license. MBNA is a federally registered service mark of MBNA America Bank, N.A.
©1996 MBNA America Bank, N.A.
AAA#M77F96

Circle No. 21 on Readers’ Service Card
In 1964, a group of physicists at Princeton University began meeting regularly to plan an experiment that would detect radiation left over from the earliest moments of the Big Bang. Outlandish as this enterprise must have sounded to their colleagues, it was in fact long overdue. Alpher and Herman had predicted some 20 years before that this radiation is a testable feature of Gamow’s Big Bang model. In retrospect it is curious that no one in the intervening 20 years detected the cosmic background radiation (CBR). Indeed, as Partridge details, it is quite accurate to say that the CBR was not detected. Rather, the people who detected it during this time—and there were several—were not the same people who expected it and would have been able to identify it as “cosmic.” Conversely, the cosmologists were notoriously unlucky in their attempt to understand the astronomical observations.

All such problems would undoubtedly be put to rest by the group assembled at Princeton: Dicke, Peebles, Roll, and Wilkinson understood clearly what it was they were looking for. Even more to the point, Dicke had worked in the Radiation Lab at MIT during World War II and had designed the type of instrument that was necessary to detect the CBR. As Partridge tells it, during one of their lunch meetings the group was interrupted by a telephone call. The other three heard only Dicke’s side of the conversation. Most of the time Dicke was silent, occasionally repeating a phrase—“horn antenna” or “liquid He calibrator”—which was familiar to them because they were building just such instruments. When Dicke hung up, he said, “Well boys, we’ve been scooped.”

And what a scoop it was! The call came from Arno Penzias, who, together with Robert Wilson, had been unsuccessful in attempts to get rid of the excess noise in their radio antenna. When the dust settled, it became clear that the cosmic background radiation had indeed been discovered, the Big Bang model became widely accepted, and Penzias and Wilson were awarded the Nobel Prize in 1979. (Given the history of near misses detailed by Partridge, it might have been appropriate to include Bernice Burke in the Nobel citation, since he was the one who informed Penzias and Wilson of the doings of the Princeton group and thus precipitated the fateful phone call.)

Perhaps the most important lesson to come out of the delayed discovery of the CBR is that it is extremely difficult to be well versed in both the theory and the observation of the CBR. This remains true today. Observers have to listen to theorists drone on about “the tightly coupled limit,” “acoustic peaks,” and “active vs. passive perturbations” while we theorists struggle to understand the differences between HEMTs and bolometers, calibration uncertainties, and side-lobe pickup.

Partridge’s book goes a long way toward bridging the gap between these two groups of scientists. He successfully reduces radio astronomy to a chapter, picking out the pieces that are essential to the CBR. He then methodically goes through experiment after experiment, describing the techniques and instruments used to make the measurement and the sources of error that each group was faced with. None of this comes off as dry, for two reasons. First, there are many figures, which are invaluable to someone unfamiliar with the instruments. Second, Partridge has been an important participant in many of these experiments and does not hesitate to throw in his personal opinions and misgivings about the many experiments. These too are extremely valuable to someone who has not been there.

Ironically, the weakness of the book is related to its very importance and relevance. While the strides in the field from 1964 to the early 1990s were indeed impressive, it has since been recognized that anisotropies in the CBR contain even more information than anyone had realized. Particularly since the detection by the COBE satellite of these anisotropies in 1992, much progress has been made on both the theoretical and the observational fronts. For the most part, the book misses these latest developments. For example, the section on statistics focuses mainly on setting upper limits on signals. This was appropriate for the experiments before COBE. Since 1992, though, there have been dozens of detections; the focus has now shifted to techniques for analyzing them. With the MAP and COBRAS/SAMBA satellites due to be launched within the next ten years, the issue of analyzing very large data sets is also becoming essential.

After 30 years, the cosmic background radiation remains the most promising probe of the early universe. Over the next ten years, startling claims will emerge from the CBR community. Estimates of the Hubble constant, curvature of the universe, and
The so-called protein-folding problem—
that is, how proteins adopt and maintain their distinctive configurations or native state—remains one of the major unresolved questions of biology. The processes of protein folding are directly related to the pathology of such diseases as mad cow disease, amyloidosis, cystic fibrosis, and sickle cell anemia. Likewise, protein folding is of import-
ance to biotechnology and the pharmaceu-
tical industries, bearing as it does on the assessment of new biological protein targets, the creation of novel drugs, and the hope-
for ability to predict protein structures.

Research on protein folding was, until recently, primarily the province of biophys-
icians. However, observations over the past decade in molecular genetics, biochemistry, and cell biology have provided novel insights into a family of pro-
teins, known collectively as molecular chaper-
ones, whose functions are to assist in the pro-
cesses of protein folding, assembly, transloca-
tion, and degradation. Indeed, molecular chaper-
ones have been identified as important partici-
ants in numerous biochemical processes in-
volved in the cell cycle and intracellular and intracellular signaling. The discovery of molec-
ular chaperones does not belie the impor-
tance of intrinsic properties of proteins in guiding their folding to the native state. Indeed, it was recognized in the 1960s by Christian Anfinsen that “another large molecule . . . could influence the folding process by intermolecular reactions” that could catalyze these events or enhance the

kinetics of protein folding.

The subject of Chaperonins is a single
well-investigated group of the molecular
chaperone family that falls into the sub-
classes GroE and TCP-1 chaperonins. The
book has a thematic coherence lacking in
more general books on molecular chaper-
ones. Key facts and highlights are presented
in a detailed and balanced fashion, the vol-
ume is well organized, and the chapters are
clearly written and use a common nomen-
clature, a feature that should be appreciated
by readers. Consequently, the volume is an
excellent resource for both students and
advanced researchers. Topics addressed
range from the evolutionary relationships
among chaperonins to their possible roles in
infectious diseases.

Appropriately, the emphasis of the vol-
ume is on the biological and biochemical prop-
erties of chaperonins found in chloroplasts,
photosynthetic bacteria, and mitochondria and
on the regulation and function of chaperonins in
Escherichia coli. The introduction provides a
useful historical perspective on the discovery
of chaperonins; we are reminded of the im-
portance of serendipity in science and of the
convergence of observations from genetics and
biochemistry. Much of the current excite-
ment is provided by in vitro studies of chaper-
onins in protein folding and biophysical
studies on the unique structure of the chaper-
onin oligomer and its role in recognition
and folding reactions. A conceptual under-
standing of the role of chaperonins in protein
folding has been provided by electron micro-
scopic and crystallographic images, which have revealed two seven-membered rings that

Electron microscope reconstruction of chaperonins. Left, GroEL-
GroES toroid; right, cross-sectional view. [Helen Saibil]

pelling picture of a macromolecular structure, a “protein-folding machine,” that can be best
described as a protein test tube or cage that
provides the environment that facilitates the
folding of an unfolded protein to its native
state while restricting inappropriate inter- and
intramolecular interactions, a function appro-
priate to the moniker chaperonin.

Richard I. Morimoto
Department of Biochemistry, Molecular
Biology and Cell Biology,
Rice Institute for Biomedical Research,
Northwestern University,
Evanston, IL 60208, USA

Molecular Aides

The Chaperonins. R. JOHN ELLIS, Ed. Acade-
mic Press, San Diego, 1996. xvi, 323 pp.,
illus., + plates. $79.95 or £59. ISBN 0-12-
237455-X. Cell Biology.

Browsings

Invention by Design. How Engineers Get from
Thought to Thing. Henry Petroski. Harvard Uni-
versity Press, Cambridge, MA, 1996. xii, 242 pp.,

Case studies of the paper clip, the pencil,
aluminum cans, airplanes, high-rise build-

ingS, bridges, and other “familiar objects.”

A Field Guide to the Birds. Giving Field Marks
of All Species Found in Eastern North America.
ROGER TORY PETERSON. Commemorative
edition. Houghton Mifflin, Boston, 1996. xxiv,

A facsimile reproduction of the original
1934 edition of this “bird book on a new
plan,” whose author died in July 1996.

A Scientist Speaks Out. A Personal Perspec-
tive on Science, Society and Change. Glenn T.
Seaborg. World Scientific, River Edge, NJ,
1996. xvi, 446 pp., illus. $48. ISBN
9810222041.

Texts of 39 lectures, 1955–1991, by the
chemistry Nobelist and former chairman of the
Atomic Energy Commission and Uni-
versity of California chancellor.

The Ultimate Resource 2. JULIAN L. SIMON.
Princeton University Press, Princeton, NJ,
1996. xiv, 734 pp., illus. $35 or £27.50. ISBN
0-691-04269-1.

An updated and much expanded edi-
tion of a 1981 work by an author well
known for his vigorous criticism of envi-
ronmentalists and demographic “doomsay-
ers”; in his view the “ultimate resource” is
“skilled, spirited, and hopeful people” who
will find ways of meeting the challenges
others worry about.
Phenanthroline should add superoxide dismutase to APP-bound (BP)\textsubscript{3}Fe(III), which effects rapid inner-sphere oxidations via pentacoordination (6, 7).

In summary, batho-based ligands cannot be used to monitor reduction of Cu(II) and Fe(III) that occurs physiologically. In fact, there is at present no easy way to do this because the reduced metals would normally be reoxidized by O\textsubscript{2}, and any indicator ligand that prevents this would concomitantly alter the iron/copper redox properties. In the cases mentioned above, one cannot thus conclude definitively that either APP or LDL is capable of spontaneous physiologic reduction of Cu(II). The same concern applies to a recent report that α-tocopherol acts as a prooxidant in human lipoproteins by reducing Cu(II) to Cu(I) (9); such action probably reflects merely the inclusion of BC to monitor the Cu(I) formed.

Lawrence M. Sayre
Department of Chemistry,
Case Western Reserve University,
Cleveland, OH 44106, USA

REFERENCES
20 May 1996; accepted 5 November 1996

Response: We summarize our evidence for the reduction of copper(II) to copper(I) by APP. First, as shown previously by us (1), APP has a high affinity binding site for copper(II), which is located within residues 135 to 155 of APP. This binding site is conserved in the related protein APLP2.

Second, complex formation between copper(II) and a synthetic peptide representing this copper(II) site in the absence of bathocuproine resulted in cysteine oxidation. The oxidized peptide still binds copper as shown by LC-ESI-MS. Recent electron paramagnetic resonance (EPR) analysis (2) showed that the cysteine oxidation is accompanied by the disappearance of the copper(II) signal.

Third, EPR analysis revealed also that copper(II) was not reduced when bound to a peptide representing the copper binding site of APP in which only cysteine was replaced by serine. This shows the importance of cysteine in copper(II) reduction by the APP peptide and that no other reducing agents are required (such as molecular oxygen, possibly present in the buffer).

Fourth, our experiments performed with bathocuproine to measure copper(I) formation showed within seconds the characteristic change of absorbance at 450 nm. Such a rapid change has never been found by us when we incubated copper(II)-bathocuproine complexes in the reaction buffer, without APP or its copper-binding site peptide, even after overnight incubation.

In conclusion, our finding of an enzyme-like activity of APP in the reduction of copper(II) to copper(I) is not solely based on bathocuproine data and does not depend on copper(II)-bathocuproine complex formation.

Gerd Multhaup
Zentrum für Molekulare Biologie Heidelberg,
University of Heidelberg,
Im Neuenheimer Feld 282,
D-69120 Heidelberg, Germany
E-mail: g.multhaup@molbio.uni-heidelberg.de

1 July 1996; accepted 5 November 1996

(continued from page 1825)

Letters to the Editor

Letters may be submitted by e-mail (at science_letters@aaas.org), fax (202)-789-4669), or regular mail (Science, 1200 New York Avenue, NW, Washington, DC 20005, USA). Letters are not routinely acknowledged. Full addresses, signatures, and daytime phone numbers should be included. Letters should be brief (300 words or less) and may be edited for reasons of clarity or space. They may appear in print and/or on the World Wide Web. Letter writers are not consulted before publication.