Dating the Ngandong Humans

Efforts to date the Ngandong human remains are critical to regional and global aspects of human evolution, especially with regard to the current debate over the emergence of modern human morphologies and their relevance, if any, to the Pleistocene and recent skeletal forms of Australian aborigines. We see, however, problems with the recent report by Carl C. Swisher et al. (1).

We consider the Solo high terrace to represent a mélange of materials reworked from different levels, sites, and ages. The human remains, despite their glossy exterior caused by repeated casting, are dark brown and black, dense, and ceramic-like in texture—in contrast to the museum and in situ faunal remains which are generally grey with bluish manganese staining, with a crumbly texture (2). It is therefore likely that the human and faunal remains originally fossilized in different environments.

The faunal elements were analyzed by U-series and electron spin resonance (ESR) dating. U-series dating is based on the measurement of the parent U isotopes and the daughter Th and on the assumption that the material does not contain any initial Th. ESR age estimations are derived from the determination of all possible radioactive sources and the estimation of ESR response to laboratory irradiation (3). A major problem for both techniques is that modern teeth do not contain any U, while fossil teeth may contain considerable amounts. The Javan specimens have high concentrations. It is not known, however, how U migrates into teeth. The general assumption is that the correct age of a specimen normally lies between the estimates of two hypothetical models, early (rapidly within a short time interval) uptake (EU) and linear (continuous) uptake (LU). The combination of ESR and U-series dating allows the simulation of U uptake (4), but requires that the apparent U-series age is younger than the ESR age.

The ESR age calculations in the report by Swisher et al. (1) are not accompanied by the most basic analytical values, so they cannot be assessed. The unknown U uptake is accounted for by the calculation of EU and LU ages. The most evident problem lies in the fact that the U-series results are older than the ESR ages. This is explained in the report by U leaching. Nearly all detailed studies of bones and teeth have shown that the predominant process of U migration is from the environment into the biological material. Leaching does occur, but usually to a minor extent with respect to the total U concentration and only at the surface. The general behavior of U migration affects both ESR and U-series results.

In order to test the leaching hypothesis, experiments were carried (1) out on enamel samples from which some surface layer was removed. The interior parts were found to be apparently younger than the outer parts. The same results can be readily explained, however, by U diffusion into the tooth. Uranium arrives at the surface first and progresses slowly, deeper into the enamel. This leads to higher U concentrations as well as apparently older U-series ages at the surface. The same process applies to dentine but, because of higher U mobility through dentine, these ages tend to be older. If the U-series data of dentine sample 94NG-T2, containing 131 ppm of U, result from leaching that happened yesterday, about 120 ppm must have been lost. If there was some delay in the original U uptake or the leaching started further back in time (or it was a continuous process, or both), then the amount of leached U must have been considerably higher. Uranium leaching on such a scale seems unlikely. Furthermore, any such leaching would lead to ESR age estimates younger than the U-determined age of about 27,000 years. In spite of the postulated leaching process in both dentine and enamel, LU age results are presented in the report (1) as if they were meaningful. Thus the ESR results are likely to be erroneous.

Our concern that the faunal elements found at the site are not necessarily of the same age as the hominid remains is supported by the gamma spectrometric results on the hominids [unpublished results that are discussed in a Research News article by Ann Gibbons (13 Dec., p. 1841)], which are considerably older than the values reported here and elsewhere (5) on the faunal material.

Recently, Swisher and Curtis and their colleagues described the Javan lineage leading to Ngandong as Pithecanthropus (6) rather than Homo. Perhaps they will soon modernize their species taxonomy as well, from erectus to sapiens.

Ngandong morphology relates in detailed features and patterns to the earliest Australians and their living descendants (7, 8), and they represent the only known later Pleistocene morphology from Indonesia. Even if the Ngandong humans proved to be only 27,000 years old, they might not have Indonesian descendants, but they must have ancestors who would still be excellent candidates for the migrations from Southeast Asia that formed the basis of the earliest Australian population. If other, more gracile or modern-looking people followed and mixed with them (8), then they all must have been the same biological species, that is, Homo sapiens.

In Java, apart from continued efforts to solve its human chronology, what is needed is less taxonomy and more comparative anatomy, one that reflects the great variability in the living as well as past human populations of the region.

Rainer Gruen
Alan Thorne
Research School of Pacific and Asian Studies, Australian National University, Canberra ACT 0200 Australia

REFERENCES

2. A. G. Thorne, personal field and museum observations.
reworking older faunal elements as well, is
taphonomically difficult to explain color
variations, as well as variations in the ap-
parent hardness of some of the hominid and
nonhominid fossils from Ngandong, are ac-
knowledged, but we disagree that these
variations are unique to either the hominid
or the nonhominid faunal elements, nor do
these features provide any information con-
cerning the relative age of the fossils. We
know of no published evidence that indi-
cates that the Ngandong hominids and
nonhominid fauna are of different age.

Our study (1) was designed to determine
which model of uranium uptake or loss in
teeth could be correct, given the data at
hand. Grün and Thorne account for our
observation of apparently older ages in the
outer layers of the enamel as an expected
result of gradual inward diffusion of U into
the enamel, while the older ages for dentine
are seen as a result of the higher mobility of
U in it. But Grün and Thorne are describ-
ing a model (of either early or continuous
uptake) which must always result in U-
series ages that (as they themselves note)
are younger than ESR ages of the associated
enamel. This problem has prompted us to
invoke a less conventional, but not entirely
novel suggestion of late U loss. This model
has in fact been used previously by Bahain
et al. (4) to account for U-series ages older
than LU ESR ages. The model of Grün and
Thorne would also be expected to lead to
inward-decreasing gradients of U concen-
tration in tooth enamel. Our analyses of
stripped teeth suggest that this was the case
for one of our samples, but not the other
two. Such gradients would not be a require-
ment of our model, although they are per-
mitted (as long as this gradient was devel-
oped earlier in the burial history of the
tooth and before surficial loss of U).

Grün and Thorne conclude that our
ESR results are probably erroneous. The
ESR dates presented in our report however,
are remarkably homogeneous: EU ages, for
example, agree to within about 7%, includ-
ing ages from samples whose U concentra-
tion varies by a factor of 30 (from 0.5 to
15.9 ppm). Thus, it is likely that all the
samples were deposited over a short time
interval whose exact chronology depends
on the U uptake history. Previous studies
of the deposits and fossils at Ngandong have
also proposed a late Pleistocene age for the
site on the basis of less comprehensive data
than that presented in our report.

Our results are basically in agreement with
previously published U-series dates on bone
(3). We are, however, aware of two unpub-
lished gamma spectrometric dates on Ngan-
dong and Sambungmacan hominids men-
tioned in the Research News article by Ann
Gibbons. It is our understanding, that these
dates were made 5 years ago by a less
reliable methodology than we have used, and
the results of this study have not been pub-
lished. We look forward to having the oppor-
tunity to compare these results with our own.

Finally, Grün and Thorne suggest that
the use of the genus Pithecanthropus in a
1994 report by Swisher et al. (5) somehow
makes the science in our more recent report
(1) antiquated. The uses of the genera Pithe-
canthropus and Meganthropus for some of
the Javanese hominids are still widely used by
many Indonesians (including our Indonesian
col leagues as well as most recent published
studies of the Javanese hominids (7)).

Carl C. Swisher III
Berkeley Geochronology Center,
Berkeley, CA 94709, USA
J. Human. Evol.

W. Jack Rink
Henry P. Schwarcz
Department of Geology,
McMaster University,
Hamilton, Ontario L8S 4M1 Canada

Greek

Department of Anthropology,
University of Florida,
Gainesville, FL 32611, USA

Susan C. Antón

REFERENCES______________

2. B. Theunissen, J. de Vos, P. Y. Sondaar, F. Aziz,
Geol. Soc. Amer. Spec. Pap. 242, 39 (1990), and
references therein.
4. J.-J. Bahain, Y. Yokoyama, C. Falguères, M. N. Sar-
7. C. B. Stringer and P. Andrews, Science 239, 1263
(1988); F. G. Howell, in Origins of Anatomically Mod-
ern Humans, M. H. Nitecki and D. V. Nitecki, Eds.
Forschungsanst. Senckenb. 69, 99 (1984); P. Right-
mire, ibid. 171, 319 (1994); D. E. Lieberman, B. A.
Wood, P. R. Pilbeam, J. Hum. Evol. 30, 97 (1996); P.
Santa Luca, Yale Univ. Pub. Anthropol., no. 78 (1980);
P. Rightmire, The Evolution of Homo erectus (Cam-
bridge Univ. Press, New York, 1983); I. Tattersall, The
Last Neanderthal (Macmillan, New York, 1995).
20 February 1997; accepted 30 April 1997