SCIENCE

A WEEKLY JOURNAL DEVOTED TO THE ADVANCEMENT OF SCIENCE, PUBLISHING THE
OFFICIAL NOTICES AND PROCEEDINGS OF THE AMERICAN ASSOCIATION
FOR THE ADVANCEMENT OF SCIENCE.

Friday, December 25, 1908

CONTENTS

Early Terrestrial Conditions that may have favored Organic Synthesis: Professor T. C.
Chamberlin, Dr. R. T. Chamberlin .... 897
University Registration Statistics: Professor
Rudolf Tombo, Jr. ....................... 911
James Fletcher .......................... 916
The Smithsonian Institution .......... 917
The Baltimore Meeting .................. 918
Scientific Notes and News .............. 920
The Resignation of President Eliot .... 921
University and Educational News ...... 922
Discussion and Correspondence:—
Aftonian Sands and Gravels in Western
Iowa: Dr. B. Shimke ................. 923
Scientific Books:—
The National Antarctic Expedition: Dr. W.
H. Dall. Parkes's Hygiene and Public
Health: Professor George M. Kober.
Snyder's Soils and Fertilisers: Professor
E. W. Hilgard. Lucien Poincaré's The
New Physics and its Evolution: Professor
W. S. Franklin .......................... 923
Scientific Journals and Articles ....... 929
Special Articles:—
The Determination of the Clay Content of
Soils: C. C. Fletcher. Notes on the
Atrophy of the Eye of Raja eurinacea: W.
M. Smallwood ......................... 930
The Convocation Week Meetings of Scientific
Societies .............................. 931

Societies and Academies:—
The Geological Society of Washington:
Philip S. Smith. The Torrey Botanical
Club: Tracy E. Hazen, W. E. Murrill,
Marshall A. Howe. Section of Geology
and Mineralogy of the New York Academy
of Sciences: Dr. Charles P. Berek.
Washington Section of the American Chemi-
cal Society: J. A. Leclerc ............... 933

MSS, intended for publication and books, etc., intended for
review should be sent to the Editor of SCIENCE, Garrison-on-
Hudson, N. Y.

EARLY TERRESTRIAL CONDITIONS THAT
MAY HAVE FAVORED ORGANIC
SYNTHESIS

There is a wide gap between the inorganic carbon compounds, as we now
know them in nature, and the much more
highly complex carbon compounds which
are the material basis of living beings. It
is a prevalent view that this gap can not
be bridged by natural processes under
existing conditions. On the face of things
this view seems to be supported by the
testimony of experience. This experience,
however, when critically examined, is not
altogether conclusive. Even if it could be
shown beyond question that the chain of
carbon compounds necessary to bind the
inorganic to the organic never is built up
under present conditions, there would still
remain a legitimate ground of doubt in the
possibility that this may be due to pre-
daceous plants and animals, especially
bacteria, which attack the carbon com-
 pounds at the first stages at which they
become available for food and thus cut off
the evolving series before it is complete.
In this it is assumed that the formation
of the more complex carbon compounds
can come about only as the result of a long
series of synthetic steps, and that at some
of these stages, probably at many of them,
the products would be suitable food for
existing beings, especially for the almost
omnivorous and ubiquitous bacteria. This
prolonged evolution may thus be regarded
as an extremely precarious process in the
presence of predatory organisms; may in-
deed be regarded as practically prohibitive