specifically inhibit DNA repair in these resis-
tant cells by targeting the key enzymes. Ge-
netic polymorphisms in relevant repair genes will be identified and efforts made to corre-
late them with effects on activity of the re-
spective proteins, with response to particular therapies and with clinical outcomes. Al-
though a number of polymorphisms in DNA repair genes are being reported, there is pres-
ently little functional information on the con-
sequences of the attendant amino acid change.

It will be important to find out which polymorphisms actually affect protein func-
tion and then concentrate on these in epide-
miological and clinical studies. For example, homozgyosity for a particular polymorphism in
the DNA ligase subunit XRCC1 is associ-
ated with higher sister chromatid exchange
frequencies in smokers, suggesting an asso-
ciation of this allele with a higher risk for
tobacco- and age-related DNA damage (19).

Larger studies and comparison with other polymorphisms having known biochemical
effects will be needed to further validate and
extend these findings.

Furthermore, with the use of gene and
protein array techniques, it should be possible to
compare expression profiles of DNA repair
genes in normal and tumor cells—information
that could eventually lead to individually
tailored therapies with chemicals and radia-
tion. For example, tumors with low levels of
NER should be more susceptible to treatment
with cisplatin (20). In experimental systems, MMR-deicient cells are highly tolerant to
alkylating chemotherapy drugs. MMR-
defective tumors such as those found in he-
reditary nonpolyposis colon cancer may be
resistant to treatment with such agents (21).

Some variation in DNA repair gene ex-
pression is epigenetic in origin and has been
found for instance with MGMT and MSH6
(22). The MGMT gene promoter is often
methylated in gliomas, resulting in sup-
pressed expression that can be associated
with an improved response after tumor treat-
ment with an alkylating agent (23). The com-
plete human genome sequence now allows
the definition of promoter regions so that the
DNA methylation status of relevant CpG is-
lands can be investigated readily. Finally, DNA repair, especially repair of oxidative
damage, has often been suggested as a rele-
vant factor in counteracting aging. An exam-
ination of polymorphisms and gene expres-
sion levels in human DNA repair genes and a
comparison with the equivalent genes in
shorter lived mammalian species should help
determine the importance of DNA repair in
normal aging processes.

References and Notes

2. The data in this paper were based on searches of the
Ensembl sequence data freeze of 17 July 2000 and
analysis updates as of 13 December 2000; see
www.ensembl.org. Additional data were from the
Golden Path server at the University of California at
Santa Cruz (http://genome.ucsc.edu/). Expressed se-
quence tag (EST) searches used dbEST [M. S. Boguski,
T. M. Lowe, C. M. Tolstoshev, Nature Genet. 4, 332
(1994)].
3. J. A. Eisen, P. C. Hanawalt, Mutat. Res. DNA Repair
4. L. Aravind, D. R. Walker, V. Koonin, Nucleic Acids
Res. 27, 1223 (1999).
5. The Arabidopsis Genome Initiative, Nature 408, 796
(2000).
6. An exact match to much of E. coli tag1 was found
(AC010537.2), indicating that there is occasional
contamination of the draft sequence that warrants
caution.
150, F31 (2000).
8. A. Constantinou, A. A. Davies, S. C. West, Cell 104,
11. M. Vignali, A. H. Hassan, K. E. Neely, J. L. Workman,
12. J. A. Tainer, E. C. Friedberg, Mutat. Res. 460, 139
(2000). See also the other reviews on the structural
biology of DNA repair in this August 2000 issue.
Kirschner, G. L. Verdict, Curr. Biol. 9, 174 (1999); L.
Aravind, V. E. Koonin, Genome Biol. 1, research0071.1
research0071).
14. E. C. Friedberg, L. B. Meira, Mutat. Res. DNA Repair
15. K. Labib, J. A. Tercero, J. F. X. Diffley, Science 288,
1643 (2000).
16. P. Gancz et al., Nature 408, 331 (2000); A. G. Fraser
20. B. Köberle, J. R. W. Masters, J. A. Hartley, R. D. Wood,
22. A. Bearzatto, M. Szadkowski, P. Macpherson, J. Jiriný,
24. Supplemental material is available on Science Online
at www.sciencemag.org/cgi/content/full/291/5507/1284/DC1.

27 September 2000; accepted 9 January 2001

The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains

Huib Caron,1,2 Barbera van Schaik,1,3 Merlijn van der Mee,3 Frank Baas,4 Gregory Riggins,6 Peter van Sluis,1 Marie-Christine Hermus,1 Ronald van Asperen,1 Kathy Boon,1 P. A. Voûte,5 Siem Heisterkamp,5 Antoine van Kampen,3 Rogier Versteeg1

The chromosomal position of human genes is rapidly being established. We integrated these mapping data with genome-wide messenger RNA expression profiles as provided by SAGE (serial analysis of gene expression). Over 2.45 million SAGE transcript tags, including 160,000 tags of neuroblastomas, are presently known for 12 tissue types. We developed algorithms to assign these tags to UniGene clusters and their chromosomal position. The resulting Human Transcriptome Map generates gene expression profiles for any chromosomal region in 12 normal and pathologic tissue types. The map reveals a clustering of highly expressed genes to specific chromosomal regions. It provides a tool to search for genes that are overexpressed or silenced in cancer.

1Department of Human Genetics, 2Department of Pediatric Oncology, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Post Office Box 22700, 1100 DE Amsterdam, Netherlands. 3Bioinformatics Laboratory, 4Neurointuigen Laboratory, 5Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands. 6Department of Pathology and Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA.
check of 156 tags extracted from 30 UniGene clusters showed that wrong tags mainly stemmed from sequence errors in ESTs and from errors in their 5’ and 3’ orientations. We developed algorithms to select 3’-end clones of 713,499 ESTs assigned to UniGene clusters and identified their tags. Sequence comparison algorithms discarded tags caused by sequence errors while preserving tags from alternative transcripts or single nucleotide polymorphisms [see supplementary information for AMCtagmap details (3)]. We identified reliable tags for 18,954 of the 24,106 UniGene clusters mapped on GeneMap’99. Manual analysis of 287 tags extracted from 86 UniGene clusters from intervals of chromosomes 1 and 22 showed an error rate of 6.2% in our electronic tag identification algorithms. To check for errors in UniGene clustering, we verified tags on the available sequenced P1-derived artificial chromosomes (PACs) of the mapped markers and annotated them accordingly [see legend to Fig. 2 and supplementary information (3)].

The Human Transcriptome Map [for a cluster of five metalloproteinases and two apoptosis inhibitors in normal breast tissue and breast cancer tissue.]

Fig. 1. Whole chromosome view of expression levels of the 1208 UniGene clusters mapped to chromosome 11 on the GB4 radiation hybrid map of GeneMap’99. Each unit on the vertical axis represents one UniGene cluster. UniGene clusters mapped by several markers are only shown once, at the position of the highest lod score (the logarithm of the odds ratio for linkage). Only clusters for which we could extract a tag with our algorithms are included. Expression is shown for SAGE libraries of 8 out of the 12 available tissue types. Expression levels in the libraries are normalized per 100,000 tags. Expression levels from 0 to 15 tags are shown by blue bars. Tag frequencies over 15 are shown by red bars. The blue-only section to the right represents a moving median with a window size of 39 genes to the right. Most chromosomes show dispersed with regions where gene expression is low (Fig. 1). This pattern is observed in all 12 tissues. An application of a moving median with a window size of 39 genes to the chromosome 11 map even more clearly visualizes the expression differences (Fig. 1, blue graph to the right). Most chromosomes show these clusters of highly expressed genes, which we call RIDGEs (regions of increased gene expression) (Fig. 3). A quantitative definition of RIDGEs is not straightforward, as there is a continuum from small to very large clusters. We analyzed whether RIDGEs can be explained by a random variation in the distribution of highly expressed genes among the 18,954 genes of the Human Transcriptome Map. When defined as regions in which 10 consecutive moving medians have a lower limit of four times the genomic median, we identify 27 RIDGEs (green bars in Figs. 1 and 3). The probability of observing this number of RIDGEs under a random permutation of the order of the 18,954 genes is very low [P = 10^-12; see supplementary information (3)]. In addition, Bayesian statistical model-
ing without prior cluster definition showed that a model of nonrandom distribution provided the best fit with the observed clustering. These analyses show that RIDGEs most likely represent a higher order structure in the genome.

Analysis of RIDGEs for physical characteristics suggests that many of them have a high gene density. Chromosome 18 is, on average, weakly expressed, and only 385 genes have been mapped to it on GeneMap'99. The equally large chromosome 19
A N A L Y S I S O F G E N O M I C I N F O R M A T I O N

consists of a succession of RIDGES and harbors 937 mapped genes (Fig. 3). Although many human genes are still unmapped, the difference in gene density of chromosomes 18 and 19 is supported by CpG island density analyses (7). The correlation between RIDGES and gene density is even more suggestive for chromosomes 3 and 6 (Fig. 4). The RIDGE on chromosome 6 corresponds to the major histocompatibility complex (MHC) region. A correlation between gene expression and density of mapped genes is found for 50 to 60% of the RIDGES [Web fig. 1 (3)]. Typical RIDGES count 6 to 30 mapped genes per centiray, compared to 1 to 2 mapped genes per centiray for weakly transcribed regions. In RIDGES, average expression levels per gene are up to seven times that of the genomic average. This suggests that in RIDGES, transcription per unit length of DNA is 20 to 200 times that in weakly expressed regions. About 40 to 50% of the RIDGES are not gene dense. These RIDGES preferentially map to telomeres, which is remarkable in light of the observed telomeric silencing in yeast (8, 9). Chromosomes 4, 13, 18, and 21 show an overall low gene expression and are devoid of RIDGES (Fig. 3). The latter three chromosomes are responsible for most constitutional trisomies, suggesting that the low expression and low gene density could limit the lethality of an extra copy of them.

The Human Transcriptome Map provides a tool to identify candidate genes that are overexpressed or silenced in cancer tissue. Neuroblastomas frequently show amplification of the distal chromosome 2p region, which targets the N-myc oncogene (10). Comparison of the whole chromosome views of chromosome 2p shows overexpression of two adjacent genes in neuroblastoma SAGE libraries. The extended interval view identifies these genes as N-myc and the often coamplified neighboring gene DDX-1 (Fig. 2). Therefore, global positional information of chromosomal defects is sufficient to identify candidate oncogenes (11). Also, tumor-specific down-regulation can be detected. Examples are a cluster of five matrix metalloproteinases on chromosome 11 (348 to 353 centirays [cR]) that are down-regulated in breast cancer tissue (Fig. 1, box); the E-cadherin tumor suppressor gene on chromosome 16 (406 cR) that is down-regulated in breast cancer tissue, as compared to normal breast tissue; and five matrix metalloproteinases on chromosome 19 (238 to 244 cR) that are down-regulated in colon carcinoma tissue, as compared to normal colon tissue (4).

Potential error sources in the Human Transcriptome Map are clustering errors in UniGene and the assignment of wrong tags to UniGene clusters. Our algorithms assign ~6.2% erroneous tags to UniGene clusters. The influence of these errors is probably attenuated. Assuming a total of 100,000 genes with 2 tags each, 200,000 tags would represent all human genes. Because there are >1 million variants of a 10-bp tag sequence, ~80% of the erroneously extracted tags will not match tags present in SAGE libraries and therefore will not influence overall expression profiles. However, individual tags and expression levels of UniGene clusters may harbor errors and require experimental confirmation. To test whether errors in UniGene clustering and mapping to GeneMap’99 may influence our observation of RIDGES, we constructed a sequence-based expression map for the annotated chromosome 21 sequence and for a 4.3-Mb annotated contig of the MHC region on chromosome 6 (12, 13). Also, these maps showed that the MHC region is a pronounced RIDGE, whereas chromosome 21 is devoid of RIDGES and has an overall weak gene expression [see Web fig. 4 for maps (3)]. Therefore, the higher order structure of the genome observed with the Human Transcriptome Map will largely be correct. The existence of RIDGES is unanticipated, as a comparable SAGE-based transcriptome map for yeast showed an even distribution over the genome of highly and weakly expressed genes (8). Because the Human Transcriptome Map identifies different types of transcription domains, it can now be analyzed as to how they relate to known nuclear substructures, such as nuclear speckles, PML bodies, and coiled bodies (14–16). Definition of the position of tags to the full chromosomal sequences will further increase the resolution of the transcriptome map. Incorporation of the growing number of SAGE libraries from different tissues and various developmental stages will extend the overview of gene expression profiles in the human body.

Fig. 4. Comparison of median gene expression levels and gene density for chromosomes 3 and 6. The left diagrams of each chromosome show the expression levels as a moving median with a window size of 39 UniGene clusters. The right diagram of each chromosome shows gene density. For each UniGene cluster, we calculated the average distance between adjacent clusters in a window of 39 adjacent UniGene clusters. The inverse of this value is shown (inverse centirays per gene).

References and Notes

3. Supplemental Web material is available at www.sciencemag.org/cgi/content/full/291/5507/1289/DC1.
4. The Human Transcriptome Map is available at http://bioinfo.amb.ova.nl/HTM.
5. A. Lal et al., Cancer Res. 59, 5403 (1999).
11. N. Speiker et al., Genomics, in press.

We thank A. Luyt and A. Sha Sawari for their help in computational analyses. A. Lash for use of the SAGEmap database and help in tag analyses, and E. Roos for expert digital imaging. Supported by grants from the Stichting Kindergeneeskundig Kankeronderzoek, the A. Meeteijer Fund, and the Dutch Cancer Society. H.C. is a fellow of the Dutch Royal Academy of Sciences.

The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains

Huib Caron, Barbera van Schaik, Merlijn van der Mee, Frank Baas, Gregory Riggins, Peter van Sluis, Marie-Christine Hermus, Ronald van Asperen, Kathy Boon, P. A. Volûte, Siem Heisterkamp, Antoine van Kampen and Rogier Versteeg

Science 291 (5507), 1289-1292
DOI: 10.1126/science.1056794