**MICROBIOLOGY**

**Biominalization of Gold**

Ions of precious metals such as gold, silver, and platinum, as well as mercury, have high electrochemical potentials and are easily reduced and tend to precipitate on the surfaces of and within thiol-rich bacterial cells. For metal bioremediation purposes, planktonic bacteria are not ideal for concentrating metals.

Karthikeyan and Beveridge have looked at the potential of *Pseudomonas aeruginosa* biofilms for gold recovery. The pillar and pore architecture of these biofilms allows a high fluid flow and strong redox gradients to form, thus promoting the concentration and deposition of metal colloids in the biofilm matrix. Moreover, the biofilm helps to protect the bacteria against the toxic properties of the gold salts, much as it protects them against the effects of antibiotics. — CA


**ECOLOGY/EVOLUTION**

**Avoiding Gridlock**

Many ant and termite species set out from the nest in columns, to scour the neighborhood for food. Like commuters in the rush hour, these crowded columns face the problem of congestion, and in some species form distinct traffic lanes. Foraging army ants in the Panamanian tropical rain forest traverse the forest floor in huge, high-speed columns of tens of thousands of workers and often form a three-lane structure in which outward-bound ants occupy two outer columns while the homeward-bound ants occupy the center.

Coulzin and Franks have developed a mathematical model of ant behavior to investigate this pattern, which takes into account factors such as the ability of individual ants to follow pheromone trails and to detect each other’s presence and avoid collisions. This individual-based model shows that local interactions and individual movements, especially asymmetry in turning rate between two interacting ants, can generate the observed three-lane structure. This self-organizing system appears to minimize the potential for congestion, allowing the ants to return to the nest by nightfall with the maximum quantity of prey. The model does not require that the individual ants attempt to minimize their journey time, which may have a cost to others. By contrast, individual humans tend to behave selfishly in traffic, with a rather different outcome. — AMS


**CHEMISTRY**

**Synthesizing at the Interface**

Polyaniline is useful in electronic and optical applications in part because its properties can be controlled easily by simple and reversible acid-base doping and de-doping. Synthesis of nanometer diameter fibers has only been possible via templated synthesis, using either hard templates like anodized alumina, or soft templates that would naturally separate.

After dialysis, the polyaniline was recovered in the form of interconnected nanofiber networks, where the fiber diameter ranges from 30 to 50 nm. In contrast to a thin film of polyaniline, the film made of the nanofibers showed a much faster electrical response upon exposure to parts-per-million concentrations of HCl and subsequent exposure of the fully doped films to NH3. The response of the nanofibers was independent of the thickness of the film made, due to their high porosity which allowed for rapid gas diffusion. — MSL


**IMMUNOLOGY**

**T Cell Memory Takes Shape**

Following an immune response, small numbers of memory lymphocytes persist, providing a rapid-reaction

CONTINUED ON PAGE 21
force to protect against further infection. This is the basis for vaccination, and understanding how memory cells work will be key to developing more effective vaccines in the future.

Using mice carrying a viral-specific transgenic T cell receptor, Kaech et al. performed a genome-wide profile of CD8+ T cells and correlated this with function and phenotype of these cells, before and after viral infection. Predictably, genes controlling migration, cytokine expression, and cytotoxicity were active during infection. In contrast, transcription of other genes increased only in memory cells that persisted several weeks after viral clearance. Among these were genes associated with cell cycle regulation, response to homeostatic cytokines, and receptor-mediated signals. Thus, precursors for CD8+ memory T cells emerge during the height of a viral immune response, but only later become fully equipped to self-maintain and to respond rapidly to subsequent infection. —SJS


CHEMISTRY

Parallel Processing

Recipes for the preparation of nanoparticles of various shapes and sizes abound, but, when it comes to making nanoparticles with a narrow distribution of sizes and shapes in large amounts, most methods fail because the precise control of temperature and homogeneous mixing are especially difficult to achieve in rapid reactions.

Nakamura et al. use a micro-reactor to overcome these hurdles in preparing CdSe nanocrystals, which can be used as fluorescent tags and in tunable light-emitting diodes. Using a previously reported method involving precipitation from a surfactant, they demonstrate that their process can generate CdSe nanoparticles continuously and reproducibly, with the capacity to tune the effects of temperature on particle size distributions and fluorescence properties. Parallel operation of these micro-reactors may permit industrial-scale preparation of CdSe and other nanoparticles. —JFU


BIOCHEMISTRY

An Uneven Exchange

The sodium pump (Na+,K+-ATPase) was one of the first active transport proteins identified almost half a century ago. Nevertheless, the structural basis for the recognition of three sodium ions in the outward half of the pumping cycle and of two potassium ions in the inward half is still largely mysterious. Ogawa and Toyoshima have built on their crystallographic analysis of Ca2+-ATPase, a related transport enzyme, by modeling the sodium pump amino acid sequence into the transmembrane domain (containing 10 helices) by homology. They find that the two sites that are known to bind Ca2+(0.99 Å ionic radius) in the calcium pump are responsible for carrying two (I, II) of the Na+ ions (0.95 Å) and, after slight movements of the helices, both of the K+ ions (1.33 Å). In both cases, the coordinating ligands are either main chain carbonyl oxygens or side chains carboxylates and amides. The third Na+ ion (III) is nearby, and the tilting of helix M5 and the rotation of helix M6 combine to render this site inhospitable to K+. —GJC

Avoiding Gridlock

*Science* 299 (5603), 19.
DOI: 10.1126/science.299.5603.19b

Use of this article is subject to the Terms of Service

*Science* (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title *Science* is a registered trademark of AAAS.