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Satellite Observations of
Magnetic Fields Due to
Ocean Tidal Flow

Robert H. Tyler,1* Stefan Maus,2 Hermann Lühr2

The ocean is an electrically conducting fluid that generates secondary magnetic
fields as it flows through Earth’s main magnetic field. Extracting ocean flow
signals from remote observations has become possible with the current gen-
eration of satellites measuring Earth’s magnetic field. Here, we consider the
magnetic fields generated by the ocean lunar semidiurnal (M2) tide and dem-
onstrate that magnetic fields of oceanic origin can be clearly identified in
satellite observations.

In a fully magnetohydrodynamic process, the
flow and electromagnetic fields are coupled. In
the ocean, however, flow generates electromag-
netic fields but the electromagnetic fields are not
thought to affect the flow appreciably. This
reduced magnetohydrodynamic case is often
called “motional induction” and can be under-
stood as follows. The dissolved salts in seawater
form hydrated, electrically charged ions. As the
charged ions are carried by the ocean flow
through Earth’s main magnetic field, they are
deflected by the Lorentz force, which acts in a
direction perpendicular to both the velocity and
magnetic field. This leads to various combina-
tions of two effects. First, the migrating ions can
accumulate to form electrical spatial charge den-
sities that in turn create electric fields that tend
to prevent further migration of charge. Second,
the spatial charge densities can be relieved by
electrical shorting through surrounding sections
of the water or electrically conducting sedi-
ments. The latter effect involves electrical cur-
rents and the associated secondary magnetic
fields, which are the subject of this paper.

Two components of the ocean-generated
magnetic field can be distinguished. The first is
a “toroidal” component that has been estimated
to reach maximum amplitudes of 100 nT but is
confined to the ocean and sediments and is
therefore not observable remotely (1–5). This
component results from electric current circuits
closing in planes containing the vertical axis.
The second is a much weaker (1 to 10 nT)
“poloidal” component with large spatial decay
scales that allow the magnetic fields to reach
remote land and satellite locations (4, 6–10).
This component involves electric current cir-
cuits closing horizontally and is the least under-
stood because it is generated by large-scale
integrals of ocean flow transport and estimates
typically require large-domain integrations.

But this dependence of the far-reaching
poloidal magnetic fields on transport integrals
also makes these fields attractive. In principle,
information about past and present ocean vari-
ability is contained in the land and satellite
magnetic records, and this variability would pri-
marily reflect integrated transport quantities (in-
cluding in ice-covered regions) that are difficult
to obtain using other methods (11). Understand-
ing such ocean variability is a key factor in
addressing climate and global change concerns,
and although an assessment of the potential for
exploiting the magnetic fields in this way is
beyond the scope of this paper, here we describe
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an initial step in identifying ocean flow effects
in the satellite record. We have performed a
global numerical prediction of the magnetic
fields due to the semidiurnal M2 ocean tidal
constituent and have compared it with observa-
tions made aboard the CHAMP (Challenging
Minisatellite Payload) satellite, and we found
close agreement between the observations and
predictions.

In the numerical prediction, the tidal flow
and main magnetic field used are given by the
results (TPXO.5.1) of Egbert (12) and the CO2
model (13), respectively. The model formula-
tion is based on a thin-sheet induction equation
[similar to the formulation discussed first by
Price (14) but with several modifications made
for the case of ocean flow forcing (15)] coupled
to equations describing zero-laplacian magnetic
potentials outside the shell (16). Independent of
the prediction, the periodic M2 magnetic-field
variations were extracted from CHAMP satel-
lite measurements collected over 2 years (16).
Figure 1 displays their real and imaginary parts
against the corresponding model predictions
(see also movie S1). A comparison of their

spectra over ocean and land (Fig. 2) confirms
that the observed M2 signal is stronger over the
ocean.

The predicted and observed ocean-gener-
ated magnetic fields agree remarkably well.
The long bands of enhanced amplitude (yel-
low and blue stripes in Fig. 1) running across
all longitudes are very much the same in the
observation and the model results. A closer
inspection reveals that even regional peaks
(red or dark blue spots) can be found to match
in most cases. Meridional stripes, visible in
Fig. 1C for the Pacific Ocean, are probably a
line-leveling problem due to incompletely re-
moved magnetospheric fields. An assimila-
tion of the data into the model could remove
this effect, but we regarded a completely
independent treatment of measurements and
model as important for this first test. In rare
cases, weak anomaly centers appear unreal-
istically over the source-free land areas. This
is an effect of the along-track filtering (ap-
plied to both model and observed data),
which transports signal from the ocean onto
the land areas. Another effect of filtering is to

reduce the local amplitude peaks of the pre-
dicted signal, which at satellite altitude
reached 3 nT before filtering. Both of these
filtering effects are illustrated in fig. S1.

As a check for potential systematic differ-
ences in the amplitudes, Fig. 3 shows the am-
plitudes of the observed and the predicted sig-
nals averaged over latitude and plotted against
longitude. Apart from the aforementioned line-
leveling problem (the short-scale oscillations
with longitude), the curves track each other
closely both in shape and amplitude despite the
fact that the predictions were calculated assum-
ing an insulating mantle. This model assumption
was initially made to provide an upper-bound
estimate while avoiding somewhat ad hoc as-
sumptions regarding the mantle conductivity
structure. We anticipated that the predictions
would systematically overestimate the longer
wavelengths due to the absence of coupling with
the lower mantle. Though mantle effects at
some level are both expected and possibly evi-
dent in our results, a discussion of this does not
appear to be required for the primary purposes
of this paper and is postponed.

Focusing on the lunar M2 tide, it has been
shown here for the first time that the oceanFig. 1. Predicted and

observed magnetic sig-
nal (scalar anomaly) of
the M2 ocean tide.
Along-track filtering to
remove large-scale
(�10,000 km) magne-
tospheric fields has
been applied to both.
Representing the peri-
odic signal in terms of
its real component Mr
(phase � 0°) and its
imaginary component
Mi (phase � 90°), the
observations are dis-
played in (A) and (C)
against the correspond-
ing predictions in (B)
and (D) (see also movie
S1). The rectangles in
(A) and (C) indicate the
areas from which the
spectra of Fig. 2 were
computed.

Fig. 2. Magnetic intensity spectra of the data
from the areas indicated in Fig. 1. Although the
ocean area exhibits a clear M2 peak, this is
absent from the land data.

Fig. 3. Meridionally averaged magnetic signal
amplitude. Predicted and observed amplitudes
are almost congruent. In two regions there are,
however, obvious deviations. Around –90° lon-
gitude, the model underestimates the tidal sig-
nal. This longitude maps to the Gulf of Mexico
but also to the west coast of South America.
Conversely, the model predicts too large a sig-
nal in the Indian Ocean (90° longitude).
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flow makes a substantial contribution to the
geomagnetic field at satellite altitude. This
has important implications: In broader terms,
it encourages future studies to assess the fea-
sibility of monitoring ocean flow from space.
A more immediate consequence, however,
is that it shows that oceanic signals must be
incorporated into geomagnetic field mod-
els. Indeed, with recent advances in internal
and external field separation (17 ), the
ocean flow signal is now the strongest re-
maining signal in the low-latitude magnetic
residuals that has not yet been modeled.
Correcting magnetic readings for ocean
flow signals could strongly improve the
accuracy of lithospheric anomaly maps and
greatly raise the detectability of small-scale
crustal magnetization.
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Dispersal, Environment, and
Floristic Variation of Western

Amazonian Forests
Hanna Tuomisto,1* Kalle Ruokolainen,1 Markku Yli-Halla2

The distribution of plant species, the species compositions of different sites,
and the factors that affect them in tropical rain forests are not well understood.
The main hypotheses are that species composition is either (i) uniform over
large areas, (ii) random but spatially autocorrelated because of dispersal lim-
itation, or (iii) patchy and environmentally determined. Here we test these
hypotheses, using a large data set from western Amazonia. The uniformity
hypothesis gains no support, but the other hypotheses do. Environmental
determinism explains a larger proportion of the variation in floristic differences
between sites than does dispersal limitation; together, these processes explain
70 to 75% of the variation. Consequently, it is important that management
planning for conservation and resource use take into account both habitat
heterogeneity and biogeographic differences.

Unraveling the relative importance of biolog-
ical interactions, random variation, dispersal
limitation, and environmental determinism in
creating differences in species composition
among sites (beta diversity) is a central issue
in plant ecology (1–7). The hypothesis that
the plant species composition of Amazonian
noninundated forests is uniform over large
areas emphasizes the role of biological inter-
actions: It is suggested that the forests are
dominated by a limited suite of competitively
superior tree species (8, 9). The hypothesis
that plant species composition fluctuates in a
random walk emphasizes dispersal history:
The species are competitively equal, and flo-
ristic differences are created through random
but spatially limited dispersal of species that

evolved in different areas (2, 10, 11). The
hypothesis that species distributions are
patchy emphasizes environmental determin-
ism: The forests are considered to be a mo-
saic where plant species composition is de-
termined by edaphic and other environmental
site characteristics (12, 13). Which of these
hypotheses is accepted as the main explana-
tory model has important practical implica-
tions for biodiversity conservation, forest
management, and the planning and interpre-
tation of ecological research.

To test how well the distributions of Ama-
zonian plant species conform to the three hy-
potheses, we inventoried 163 sites in four re-
gions in western Amazonia (Colombia, Ecua-
dor, northern Peru, and southern Peru) using a
standard quantitative procedure (500-m–by–5-m
line transects) (14, 15). The inventories included
noninundated forests on clay or loam soils (122
sites; henceforth called tierra firme) and on
white sand soils (3 sites) and seasonally inun-
dated and swamp forests (38 sites). The topog-

raphy of the transects ranged from flat to hilly
(with a difference in elevation of up to 60 m),
depending on local terrain. We inventoried two
distinct plant groups: pteridophytes (ferns and
fern allies) and the Melastomataceae (a family
of shrubs and small trees). Because these groups
are both phylogenetically remote and dispersed
by different agents (wind versus animals), they
provide independent test cases for measuring the
relative importance of processes related to evo-
lution, dispersal limitation, biological interac-
tions, and niche differentiation. By focusing on
these plant groups, we were able to compare
voucher specimens and apply a uniform taxon-
omy over all regions; hence, we did not need to
exclude unnamed morphospecies from the
analyses [as is usually done in tree inven-
tories (8, 9, 11)]. Our approach also yields
relatively high numbers of individuals per
species and an indication of leveling-off of
the species-area curve within each site (13,
14 ), which should dampen the effect of
sampling error. The data set includes 286
species and 297,000 individuals of pterido-
phytes, and 265 species and 40,300 individ-
uals of Melastomataceae. We analyzed sev-
eral (usually three) composite soil samples
from each site (15) to obtain quantitative
data on mean soil chemistry and texture
(tables S1 and S2).

We first examined the hypothesis that tierra
firme forests are uniform over wide areas, espe-
cially when only the most abundant species are
considered (8, 9). If the forests are uniform, then
floristic similarity among sites should be uni-
formly high and have no identifiable pattern; in
particular, the degree of floristic similarity
should not depend on the geographic distance
between sites or on differences in their environ-
mental conditions. We tested these predictions
with Mantel tests, and they were refuted for both
pteridophytes and Melastomataceae: Floristic
distance between sites showed a significant cor-
relation with both environmental and geograph-
ic distance (Table 1). These correlations were
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