Extreme Waves Under Hurricane Ivan

David W. Wang, Douglas A. Mitchell, William J. Teague, Ewa Jarosz, Mark S. Hulbert

On 15 September 2004, the center of Hurricane Ivan (Fig. 1A and fig. S1) passed directly over six wave-tide gauges deployed by the Naval Research Laboratory (NRL), at depths of 60 and 90 m, on the outer continental shelf in the northeastern Gulf of Mexico, allowing us to measure the extreme waves directly under a category 4 hurricane (1). We calculated significant wave height ($H_s$) and maximum individual wave height ($H_{max}$), two parameters commonly used to characterize wave fields (2).

During Ivan’s approach, $H_s$ and $H_{max}$ rapidly increased and reached peak values when the radial distance between the eye’s center and the moorings was $\sim 75$ km (Fig. 1B). $H_s$ reached maximum values of 17.9, 16.1, and 17.1 m at moorings 3, 4, and 5, respectively. These $H_s$ values were larger than those measured the same day by National Data Buoy Center (NDBC) buoy 42040 (Fig. 1A), which recorded the largest $H_s$ ($15.96$ m) ever reported by NDBC. The largest $H_{max}$ reached 27.7 m (91 ft) at mooring 3; out of 146 waves measured at moorings 3, 4, and 5, there were 24 individual waves with heights greater than 15 m (50 ft) (1).

The measured values of $H_s$ and $H_{max}$ depict the radial variability of the hurricane wave field in the range $1 \leq r/R \leq 3$ (Fig. 1C), where $r$ is the radial distance from the moorings to the eye’s center and $R$ is the radius of maximum winds (40 km) (3). $H_s$ increased rapidly as the normalized radial distance approached 1 (Fig. 1, B and C) and can be approximated by an exponential curve of the form $H_s = a(r/R)^b \exp[-(r/R)^c]$, where $a = 56.61$ m, $b = -0.96$, and $c = -0.94$ (Eq. 1). This compares well with a numerical model (4), provided the model’s $H_s$ is set to 21 m at $r/R = 1$ (Fig. 1C). Past observations of $H_{max}$ during hurricane-generated seas suggest that $H_{max}$ can reach $1.9H_s$ (3), which is consistent with the upper limit of our measurements (Fig. 1B).

The wave-sampling strategy (1) employed captured a small segment of the wave field, suggesting our measurements likely missed the largest waves near the storm’s eyewall. The largest measured $H_s$ reached 17.9 m at a radial distance of 73 km, about 30 km from the strongest winds. Furthermore, our measurements, from the forward face of Ivan, are likely $\sim 85\%$ of the maximum $H_s$ typically found in the right quadrant (4, 6). These factors strongly suggest the wave field associated with Ivan should generate maximum $H_s$ values greater than 21 m and $H_{max}$ values greater than 40 m at $r/R = 1$.

The values of $H_s$ measured here, possibly reduced by shoaling, are larger than those predicted by several parametric wave models developed for deep water conditions. Young (3) proposed a semi-empirical model based on $R$, maximum wind speed ($U_{max}$), and hurricane translation speed ($V_p$): with $R = 40$ km, $V_p = 6$ m s$^{-1}$, and $U_{max} = 60$ m s$^{-1}$, the model predicts a maximum $H_s$ of 15.1 m. Hsu (7) suggested a simple empirically determined formula, $H_s = 0.2(U_{max}/V_p)^{0.5}$, where $r_{max} = 1013$ mbar is the pressure at the edge of the hurricane and $P_0 = 935$ mbar is the central pressure, resulting in an $H_s$ of 15.6 m. Underestimation by these models likely stems from the absence of wave data under intense storms. Measurements of the extremely large waves directly under Ivan may act as a starting point for improving our understanding of the waves generated by the most powerful hurricanes.

References and Notes
1. Materials and methods are available as supporting material on Science Online.
8. Supported by the Office of Naval Research as part of the NRL’s basic research project “Slope to Shelf Energetics and Exchange Dynamics (SEED)” under program element 0601153N (NRL-Stennis Space Center contribution no. NRU/CDM/330–05–5172), by the Minerals Management Service Environmental Studies Program, and by the Minerals Management Service Technology Assessment and Research Program on Hurricane Ivan.

Supporting Online Material
www.sciencemag.org/cgi/content/full/309/5736/896/DC1
Materials and Methods
Fig. S1
21 March 2005; accepted 8 July 2005
10.1126/science.1112509

David W. Wang, NRL/JA/7330–05–5172), by the Minerals Management

*To whom correspondence should be addressed.
E-mail: dwang@nrlssc.navy.mil

NRL Research Laboratory, Stennis Space Center, MS 39529, USA.
Editor's Summary

This copy is for your personal, non-commercial use only.

**Article Tools**  Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/309/5736/896

**Permissions**  Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl