LETTERS

edited by Etta Kavanagh

Editorial Expression of Concern

THE REPORT ENTITLED “PATIENT-SPECIFIC EMBRYONIC STEM CELLS DERIVED FROM HUMAN SCNT blastocysts” by W. S. Hwang et al. (1) reported the establishment of 11 human embryonic stem cell lines by somatic cell nuclear transfer of skin cells from patients with disease or injury into donated oocytes. Hwang and G. Schatten, the corresponding authors of the paper, have notified Science of their intention to retract the paper. Hwang has sent us some language that he intends to use in the retraction. We have requested more information from the authors as well as agreement from all the co-authors to retract the paper.

On 23 December 2005, the Seoul National University Investigation Committee provided an interim report on their investigation of Woo Suk Hwang’s research. The report (2) stated that “the experimental data submitted to Science in support of 11 stem cell lines (DNA fingerprinting, microscopic photos, confirmation of teratomas, etc.) were all derived from 2 cell lines” and that “the Committee finds that the experimental data published in the 2005 Science paper were based on a deliberate manipulation, in other words a fabrication of research results.” The report also states that “The Investigation Committee has submitted samples of cell lines 2 and 3 for DNA testing in order to determine their authenticity.”

An earlier paper by Hwang and colleagues (3) attracted much attention as the first demonstration of the derivation of a pluripotent embryonic stem cell line from a cloned human blastocyst. Given the concerns raised about the 2005 paper, we are undertaking a careful review of the 2004 paper as well and expect to consult with outside advisers as needed. The SNU Investigation Committee announced that it has begun an investigation of this paper and of other work from the Hwang lab.

Science is publishing this expression of concern to alert our readers that serious concerns have been raised about the validity of the findings in these two papers. We are working with the authors and SNU to proceed with the retraction of the 2005 paper (1). We will provide more information on the 2004 paper as it becomes available.

DONALD KENNEDY

Editor-in-Chief

References

Clarifications on miRNA and Cancer

THE NEWS FOCUS ARTICLE “A NEW CANCER player takes the stage” (4 Nov. 2005, p. 766) by J. Cousin on miRNAs and cancer has a quote from me that has been taken out of context and conveys exactly the opposite meaning of my unedited comments.

To clarify, some of the miRNAs induced during cell differentiation may down-regulate cell division programs. Because miRNAs down-regulate target mRNA genes through complementary sites in their 3’UTRs, oncogene targets with mutations in miRNA-complementary sites might escape miRNA regulation to generate dominant activating oncogene mutations. Such gain-of-function mutations are seen in plant genes that regulate cell division at the meristem. Other miRNAs are overexpressed or amplified in animal tumors, suggesting that these miRNAs negatively regulate tumor suppressor or proapoptotic genes.

Many dominant oncogenes have been revealed by cell transformation assays over the past 30 years. If miRNA negative regulation of oncogenes is a key element in cancer etiology, I am surprised that 3’ UTR mutations in oncogenes were not detected in such transfection experi-

Revamping NIH Study Sections

ANTONIO SCARPA, DIRECTOR OF NIH’S CENTER for Scientific Review, has stated his intention to enhance efficiency and recruit excellent reviewers for NIH peer review. As an NIH grant holder for 30-odd years and former study section member, I propose the following.

1) Experienced senior scientists would be brought back into the system. Inexperienced assistant professors would be removed, to their own great benefit. The quality of scientific review would immediately improve.
2) The onerous workload of a full-time study section member would be eliminated.
3) Peer review would become less political.

Each study section tends to develop its own subculture, but this is not necessarily a good thing. A study section’s task is to identify for NIH those projects of greatest scientific merit. A fresh look at a revised proposal by a new panel of peers will maintain focus on its fundamental significance and avoid overemphasis on subculture-sensitive details.

One frequently voiced objection is that such required service will be performed grudgingly and therefore badly. But most of us will adhere to accepted professional standards, even when performing an onerous task. Further, the study section acts as its own peer reviewer; nobody wants to present an incompetent critique before peers.

Such “full participation” would correct some of the distortions that threaten to overwhelm this basically admirable process.

JOHN LENARD

Department of Physiology and Biophysics, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
E-mail: lenard@umdnj.edu
Coastal Vegetation and the Asian Tsunami

THE BARRIER FUNCTION OF COASTAL VEGETATION during the recent tsunami disaster has been highlighted by the results of F. Danielsen et al. (“The Asian tsunami: a protective role for coastal vegetation,” Brevia, 28 Oct., p. 643). Their conclusions confirm assumptions made earlier by Pearce (1), Williams (2), and many others. Although the authors used a limited analytical approach on a single Indian lagoon, there are some caveats they did not address.

First, the authors assessed pre-tsunami vegetation cover using remotely sensed data and categorized vegetation as dense, open, and no trees. However, as highlighted by Dahdouh-Guebas et al. (3), “cryptic ecological degradation” in the field may be masked on remotely sensed imagery, and mangroves that appear healthy by species composition and density on remote sensing imagery may in fact be subject to strong qualitative degradation. The concept of cryptic ecological degradation in mangrove forests is even more important in light of these forests having provided less protection during the recent tsunami than 24 other Sri Lankan lagoons, as evident from cluster analyses (4). Considering the ability to extract such important qualitative information at a resolution of species and even individuals (5), the very high resolution IKONOS and QuickBird satellite imagery, to which the authors had access, has not been used to its full potential.

Second, the authors do not identify variation in house construction or variation in mangrove settings as possible factors influencing damage to the villages. The image of the mosque as the only building left standing in Banda Aceh after the tsunami hit (6) suggests that the architecture of buildings or the materials that are used for their construction may have been a determining factor in withstanding the tsunami wave. Their fig. 1 suggests that there are at least two different types of mangrove settings: fringing forests and riverine forests (7). This may have influenced the impact of the tsunami as well.

Finally, only three of the villages analyzed are located behind a potential barrier. Most of the villages were very close to the ocean (see Danielsen et al.’s fig. 1), in which tsunami destruction, somehow attenuated by beach-front Casuarina plantations, is evident. A comparison between villages located at a (similar) distance from the coastline but protected to various extents by different types of mangrove settings, but no barriers at all is not made. Such a comparison could have accounted for the variation in distance to the coast.

FARID DAHDOUH-GUEBAS AND NICO KOEDAM
Biocomplexity Research Team c/o Laboratory of General Botany and Nature Management, Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium.

Response

WE AGREE WITH DAHDOUH-GUEBAS AND KOEDAM on the need for better understanding of the tsunami mangrove shield. However, we believe the relatively homogenous coastal characteristics of our study site minimised intrasite differences in the energy of the incoming tsunami and allowed the benefits of a tsunami tree shield to be studied.

The few (1) field-based and quantitative studies of the shielding function of mangroves against wind-induced waves (2, 3) cannot be generalized to tsunami. The hydraulic resistance of mangroves to tidal flow (4, 5) differs substantially from their resistance to wind-induced waves (3), suggesting that the protective capacity of mangroves varies according to the time scale of the waves (6). Tsunami waves have a period of 1 to 2 hours (7), compared with wind-induced waves (~20 s) and tidal flow (diurnal and semidiurnal). As tsunami waves behave differently from other waves (8), their hydraulic properties cannot be estimated by interpolation.

Analysis of QuickBird (0.6-m pansharpened pre-tsunami) and IKONOS (4-m multispectral post-tsunami) images and ground surveys by scientists with 13 years of experience in the study area demonstrated quantitatively

References

FINN DANIELSEN, MIKAEL K. SØRENSEN, METTE F. OLVIG, VAITHILINGAM SELVAM, FAIZAL PARISH, NEIL D. BURGESS

LETTERS

www.sciencemag.org SCIENCE VOL 311 6 JANUARY 2006
TECHNICAL COMMENT ABSTRACTS

Comment on “A Hydrogen-Rich Early Earth Atmosphere”

David C. Catling

Tian et al. (Reports, 13 May 2005, p. 1014) proposed a hydrogen-rich early atmosphere with slow hydrogen escape from a cold thermosphere. However, their model neglects the ultraviolet absorption of all gases other than H₂. The model also neglects Earth’s magnetic field, which affects the temperature and density of ions and promotes nonthermal escape of neutral hydrogen.

Full text at www.sciencemag.org/cgi/content/full/311/5757/38a

Response to Comment on “A Hydrogen-Rich Early Earth Atmosphere”

Feng Tian, Owen B. Toon, Alexander A. Pavlov

Catling speculates that the exobase of early Earth was hot and that the ancient nonthermal escape rate was more than 1000 times the present rate. However, low oxygen and high carbon dioxide on early Earth yields a cold exobase, and nonthermal escape rates are limited and cannot balance the volcanic outgassing of hydrogen.

Full text at www.sciencemag.org/cgi/content/full/311/5757/38b
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/311/5757/36.2

Permissions Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl