Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus

James Stevens, Ola Blixt, Terrence M. Tumpey, Jeffery K. Taubenberger, James C. Paulson, Ian A. Wilson

The hemagglutinin (HA) structure at 2.9 angstrom resolution, from a highly pathogenic Vietnamese H5N1 influenza virus, is more related to the 1918 and other human H1 HA s than to a 1997 duck H5 HA. Glycan microarray analysis of this Viet04 HA reveals an avian α2-3 sialic acid receptor binding preference. Introduction of mutations that can convert H1 serotype HA s to human H5 HA frameworks, permitted binding to a natural human H5N1 influenza virus, is more related to the 1918 and other human H1 HA s than to a 1997 duck H5 HA, and hence suggests direct bird-to-human transmission. Although 16 avian and mammalian serotypes of HA are known, only three HA frameworks, as on H3 and H1 HA frameworks, as few as two amino acid mutations can switch human and avian receptor specificity. Of the H5N1 viral isolates studied to date, A/Vietnam/1203/2004 (Viet04) is among the most pathogenic in mammalian models, such as ferrets and mice, and this virus was originally isolated from a 10-year-old Vietnamese boy who died from bird flu. Because of the importance of HA in viral pathogenesis and host response to viral infection, we cloned and expressed the ectodomain (HA0) of its HA gene (fig. S1) in a baculovirus expression system, using the same strategy that led to the crystal structure of the 1918 influenza virus HA0 (11, 12). Viet04 HA0 was cleaved during protein production into its activated form (HA1/HA2) and was crystallized at pH 6.55 (13). Its structure was determined by molecular replacement (MR) to 2.95 Å resolution (table S1) (14). In addition, we have investigated the potential of this H5 HA to acquire human receptor specificity by introducing mutations known to effect such a specificity switch on H1 and H3 frameworks.

Structural overview. The overall fold of the Viet04 HA trimer (fig. 1, A and B) is very similar to other published HAs, as expected, with a globular head containing the receptor binding domain (RBD) and vestigial esterase domain, and a membrane proximal domain with its distinctive, central α-helical stalk and HA1/HA2 cleavage site (essential for viral pathogenicity). Although Viet04 HA and the only other avian H5 HA structure, Sing97 [A/Duck/Singapore/3/1997; Protein Data Bank (PDB) entry 1sm (15)], are closely related in sequence (H1, 90%; HA2, 98%), the best molecular replacement (MR) solutions were sur-

36. The OMEGA instrument was developed with the support of the Centre National d’Etudes Spatiales (CNES), Agenzia Spaziale Italiana (ASI), and Russian Space Agency. The scientific activity is funded by national space and research agencies and universities in France, Italy, Russia, Germany, and the United States. We are very grateful to all of the European Space Agency (ESA) teams who, together with industry, enable this mission. Public OMEGA data are accessible on the ESA Planetary Science Archive Web site. This paper benefited from very valuable comments from S. Munchie.

15 November 2005; accepted 20 March 2006

10.1126/science.1122659
prisiningly achieved by using the 1918 H1 structure (sequence identity: HA1, 58%; HA2, 85%) as a search model (16). Superimposition of human, avian, and swine HA structures by using their HA2 domains (table S2) or individual domains (table S3) confirms that the Viet04 HA is more closely related to human 1918 H1 HA [root mean square deviation (RMSD) 1.2 Å] than to Sing97 H5 HA (RMSD 1.7 Å).

For example, an interhelical loop between the two major helices in HA2 is stabilized by a hydrogen bond between HA2 Arg68 and HA2 Asn81, resulting in its having an overall conformation much more akin to the 1918 H1 loop than to that of Sing97 or H3 (Fig. 1C).

The amino acid sequence of Viet04 HA predicts seven possible glycosylation sites per monomer, although one is in the cytoplasmic tail and unlikely to be glycosylated. Interpretable electron density is observed at 16 of the possible 54 glycosylation sites in the asymmetric unit (nine monomers), which represents carbohydrate 54 glycosylation sites in the asymmetric electron density is observed at 16 of the possible domains (table S3) confirms that the Viet04 structure (sequence identity: HA1, 58%; HA2, 85%) as a search model (16). Superimposition of human, avian, and swine HA structures by using their HA2 domains (table S2) or individual domains (table S3) confirms that the Viet04 HA is more closely related to human 1918 H1 HA [root mean square deviation (RMSD) 1.2 Å] than to Sing97 H5 HA (RMSD 1.7 Å). For example, an interhelical loop between the two major helices in HA2 is stabilized by a hydrogen bond between HA2 Arg68 and HA2 Asn81, resulting in its having an overall conformation much more akin to the 1918 H1 loop than to that of Sing97 or H3 (Fig. 1C).

The amino acid sequence of Viet04 HA predicts seven possible glycosylation sites per monomer, although one is in the cytoplasmic tail and unlikely to be glycosylated. Interpretable electron density is observed at 16 of the possible 54 glycosylation sites in the asymmetric unit (nine monomers), which represents carbohydrates at two sites, Asn34 and Asn169 in HA2, although one is in the cytoplasmic tail and unlikely to be glycosylated. Interpretable electron density is observed at 16 of the possible 54 glycosylation sites in the asymmetric unit (nine monomers), which represents carbohydrates at two sites, Asn34 and Asn169 in HA2.

From our previous 1918 HA0 structure, we proposed that a pH-sensitive histidine patch (HisA18, HisA38, and HisB111) (14), together with the adjacent HA2 TrpB21, could play a role in fusion peptide destabilization and release (Fig. 1A) (11). This structural feature is conserved in other avian and human H1, H2, and H5 serotypes, as well as in Viet04 HA (Fig. S3). In 1918 HA0, a second patch of four exposed histidines within the vestigial esterase domain (Fig. 1A and fig. S4A), together with a nearby lysine, was also implicated in pathogenicity via enhanced membrane fusion (II). Of the five HA1 residues in this basic patch (His47, Lys49, His273, His285, and His298), only three are conserved in avian H5 structures (His47, Lys49, and His298) (fig. S4, A to D), but Viet04 and Sing97 HAs have an additional lysine (Lys46) and histidine (His298) (fig. S4, B, C, and E). Furthermore, Viet04 has yet another lysine (Lys46), which renders this patch even more basic and is found in two strains (1203/1204) that were isolated from the same patient (10) (fig. S5). The contribution of this region to virulence, if any, is as yet unknown, but is worthy of further investigation.

H5N1 antigenic variation. Phylogenetic analysis of H5 HA genes from 2004 and 2005 has revealed two distinct lineages, termed clades 1 and 2 (23); Viet04 belongs to the Indochina peninsula lineage (clade 1). Comparison of their amino acid sequences identified 13 positions of antigenic variation that are mainly clustered around the receptor-binding site; the rest are within the vestigial esterase domain (Fig. 2). Escape mutants of H5 HAs (24, 25) can be clustered into three epitopes (24), as follows: site 1, an exposed loop (HA1 140 to 145) that overlaps with antigenic sites A (26) of H3 (27) and Ca2 of H1 (28); site 2, HA1 residues 156 and 157, which correspond to antigenic site B in H3 serotypes; and site 3, HA1 129 to 133, which is restricted to the Sa site in H1 HAs (26) and H9 serotypes (29). Thus, natural variation caused by mutations at these positions is rare.

Fig. 1. Crystal structure of Viet04 HA and comparison with 1918 human H1, duck H5, and 1968 human H3 HAs. (A) Overview of the Viet04 trimer, represented as a ribbon diagram. For clarity, each monomer has been colored differently. Carbohydrates observed in the electron-density maps are colored orange, and all the asparagines that make up a glycosylation site are labeled. Only Glu20, Glu209, and Phe134 are not labeled, as these are on the back of the molecule. The location of the receptor binding, cleavage, and basic patch sites are highlighted only on one monomer. All the figures were generated and rendered with the use of MacPymol (66).

(B) Structural comparison of the Viet04 monomer (olive) with duck H5 (orange) and 1918 H1 (red) HAs. Structures were first superimposed on the HA2 domain of Viet04 through the following residues: Viet04, Gly1 to Pro(40); 1918 H1 (PDB: 1rd8), Gly1 to Pro(160); H5 (PDB: 1jsm), Gly1 to Pro(160); 1918 H1 (PDB: 1rd8), Gly1 to Pro(160); H5 (PDB: 1jsm), Gly1 to Pro(160); 1918 H1 (PDB: 1rd8), Gly1 to Pro(160); H5 (PDB: 1jsm), Gly1 to Pro(160). Orientation of the overlay approximates to the blue monomer in (A). (C) Superimposition of the two long α-helices of HA2 for 1918 H1 (PDB: 1rd8), avian H5 (PDB: 1jsm), human H3 (PDB: 2hm0), and Viet04 reveal that the extended interhelical loop of Viet04 is more similar to the 1918 H1 than to the existing avian H5 structure. The side chain of Phe(63) is illustrated as an example of the close proximity of the two structures.
containing receptors with very weak (millimolar) affinity (32). However, influenza virus can increase its avidity to host cells through multivalent binding via a high density of HA trimers on the virus surface. Avian viruses bind to sialosides with an α2-3 linkage in the intestinal tract, whereas human-adapted viruses are specific for the α2-6 linkage in the respiratory tract (7), although H5 viruses have also been reported in human intestine (33). A switch from α2-3 to α2-6 receptor specificity is a critical step in the adaptation of avian viruses to a human host and appears to be one of the reasons why most avian influenza viruses, including current avian H5 strains, are not easily transmitted from human to human after avian-to-human infection.

All HA structures, including Viet04 (Fig. 3A), have similarly configured RBDs. The binding site comprises three structural elements, namely an α-helix (190-helix, HA1 188 to 190) and two loops (130-loop, HA1 134 to 138, and 220-loop, HA1 221 to 228) (Fig. 3A). A number of conserved residues are involved in receptor binding, including Tyr236, Trp153, and His183 (Table 1) (19). Superimposition of the RBD structural elements of Viet04 with Sing97 H5 reveals a very close relation (RMSD 0.3 Å) (Fig. 3B). Indeed, all key residues implicated in receptor specificity [reviewed in (19)] (Table 1) are conserved between structures, although loop 210 to 221 is displaced ~1 Å from its equivalent in Sing97 (Fig. 3B). Otherwise, only two RBD residues differ between these two H5 HA s (Viet04, Arg216 and Ser221; Dk97, Glu216 and Pro221). Thus, the question arises as to how a current H5 virus could adapt its HA for binding to human receptors.

Receptor binding specificity of Viet04 HA. Our cloning and expression strategy produces HA with a His-tag at the C terminus, which facilitates receptor-binding studies using a glycan microarray (34–37). Glycan analyses of Viet04 HA reveal an avian α2-3 specificity in which the highest affinity is for glycans with sulfate on the 6 position of the N-acetylglucosamine (GlcNAc) residue at the third position in the glycan chain (Fig. 4A and table S4) (38, 39). Considerable binding to only one α2-6-linked sialoside was observed (6'-sialyllactose, no. 49), but this glycan is only found in milk and is not a receptor candidate for influenza (40). We also expressed and investigated the glycan-binding properties of A/Duck/Singapore/Q-F119-3/1997 (Dk97), whose sequence is identical to that of Sing97, for correlation with its structure (15). Binding of glycoproteins (nos. 1 to 6) and sulfated glycans was comparable to those of Viet04, but binding to other α2-3 sialosides was reduced relative to Viet04 (Fig. 4B).

Mutational analysis of the RBD. Previous studies using whole virus identified a number of key RBD mutations that were implicated in avian-human receptor specificity switching in H1, H2, and H3 serotypes. However, adaptation of avian H1 and H2/H3 serotypes for human receptor binding occurs by different mecha-

Fig. 2. Antigenic variation in recent H5N1 viruses mapped onto the Viet04 structure. (Left) Side view of the Viet04 structure in which natural mutations identified by comparison of 2005 with 2004 isolates (23) are colored yellow; escape mutants (24, 25) are blue; and those that overlap in both analyses are green. All of the 2004 and 2005 strains have a new potential glycosylation site at position 158 in the HA1 chain (orange). The receptor binding site is highlighted with a red oval. (Right) Top view looking down onto the globular membrane distal end of the trimer around the RBD showing that the mutations mainly cluster around the RBD.

Fig. 3. Analysis of Viet04 receptor binding site. (A) The Viet04 receptor-binding domain (RBD) with the side chains of key residues for receptor binding labeled. The binding site comprises three structural elements: an α-helix (190-helix) and two loops (130-loop and 220-loop). Residues mutated in this study are labeled red. (B) Overlay of the RBDs of Viet04 with Sing97 structure (PDB: 1jsm) reveals a similar RBD. The most divergent part of the pocket is the loop made up of residues 210 to 221, in which the Viet04 loop is displaced ~1 Å farther away from the binding pocket compared with the 1997 avian H5. Only two residues, at position 216 and 221, differ in these two RBDs.
nisms. For H2 and H3, mutation of Gln²²⁶ and Gly²²⁸ in avian strains to Leu²²⁶ and Ser²²⁸ in human viruses correlates with a shift to human receptor specificity (41, 42). In H1 serotypes, the avian Gln²²⁶ and Gly²²⁸ framework is maintained and a Ghu¹⁹⁰ to Asp¹⁹⁰ mutation now appears critical for adaptation to human receptor (43, 44). Indeed, glycans and cell-based assays revealed that the 1918 HA could be readily converted from classic α2-6 receptor specificity to classic avian α2-3 specificity by only two mutations (D190E and D225G) (35, 45). Here, the reverse experiment was performed with an avian H1 virus [A/Duck/Alberta/35/1976 (Dk76)] in which the same two residues were mutated to the “human” sequences (E190D and G225D), which completely converted Dk76 to exclusive α2-6 specificity, similar to that seen for the South Carolina 1918 virus (Figs. 4C and 5, A to C; and table S4) (11, 46).

However, which mutations are likely to modulate receptor specificity in the H5 serotype is not so obvious. Based on sequence similarity, H5 is in the same clade as H1, H2, and H6 serotypes (47). So, to address that issue, we analyzed glycan binding of Viet04 HA (Fig. 5 and fig. S6) by generating a panel of mutants

Table 1. Conserved residues within the RBDs of H1 and H5 serotypes that are implicated in receptor specificity. Accession numbers for each wild-type HA are listed in supporting online material. Residues mutated in this study are highlighted in gray. The last two columns give a qualitative assessment of α2-3/α2-6 binding preferences for each mutant with the glycan array.

<table>
<thead>
<tr>
<th>Viral strain</th>
<th>Amino acid position</th>
<th>Specificity</th>
<th>α2-3</th>
<th>α2-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 serotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Duck/Alberta/35/1976 (E190D)</td>
<td>Y T W H D S L E P K G Q A G O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Duck/Alberta/35/1976 (G225D)</td>
<td>Y T W H E S L E P K D Q A G O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Duck/Alberta/35/1976 (E190D,G225D)</td>
<td>Y T W H D S L E P K D Q A G O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5 serotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (E190D)</td>
<td>Y S W H D K L R S K G Q S G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (G225D)</td>
<td>Y S W H E K L R S K D Q S G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (E190D,G225D)</td>
<td>Y S W H D K L R S K D Q S G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (Q226L)</td>
<td>Y S W H E K L R S K G L S G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (S227N)</td>
<td>Y S W H E K L R S K G Q N G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (G228S)</td>
<td>Y S W H E K L R S K Q S S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (Q226L,G228S)</td>
<td>Y S W H E K L R S K G L S S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (R216E)</td>
<td>Y S W H E K L E S K G Q S G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (S221P)</td>
<td>Y S W H E K L R P K G Q S G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Vietnam/1203/2004 (R216E,S221P)</td>
<td>Y S W H E K L E P K G Q S G</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Although Viet04 mutants (G228S and Q226L,G228S) only bound a limited number of α2-6 ligands, they bound strongly to these glycans and were, therefore, assessed as for α2-6 specificity. No binding is represented by “O”; ND indicates binding to the array was not determined.

Fig. 4. Glycan microarray analyses of (A) Viet04, (B) Dk76, and (C) an avian H1, Dk76. The Dk76 HA sequence is identical to that in the published structure of duck virus Sing97, so a direct structural comparison can be made. Binding to different types of glycans on the array are highlighted where orange represents glycoproteins; yellow, α2-3 ligands; green, α2-6 ligands; blue, α2-8 ligands; and purple, other ligands such as β-linkages, modified sialic acid analogs or glycooligosaccharide acids. Red bars indicate sulfated or additional negatively charged ligands. See table S4 for list and tabulated binding results. Because of continual glycan microarray development, a number of new ligands were printed between analyzing the Dk76 protein (C) and the remaining samples reported in this study. Binding to glycans nos. 37 to 44, 56, 58 to 60, 67, and 70 was not determined for Dk76 and its three mutants in Fig. 5.
(Fig. 3A and Table 1) in and around the RBD to explore whether this H5 HA can readily become adapted to humans through mutations that are known to change receptor specificity in H1 and H3 serotypes. Mutations at positions 190 and 225 did not reveal any adaptation of Viet04 to human receptor analogs (Fig. 5, D to F) (48), in contrast to H1 Dk76 (Fig. 5, A to C) and 1918 HAs (35). Indeed, the single E190D mutation on the Viet04 framework reveals markedly reduced affinity to α2-3 sialosides (Fig. 5D), whereas the double mutant (E190D,G225D) did not interact at all with the glycan microarray (Fig. 5F) (49, 50). However, sulfated glycans bound equally well to the single E190D mutant and to the wild type (Figs. 4A and 5D), which suggests that other residues within the Viet04 RBD, such as Lys193 or Lys222 (Fig. 3A), may enhance interaction with charged glycans.

Mutation of residues 226 and 228, which enable H3 viruses to switch from avian to human specificity, was also evaluated as a potential route for H5 viruses to acquire human receptor specificity. Although a dramatic switch to a classic α2-6 human receptor binder was not observed (51), the double mutant (Q226L,G228S) showed substantially reduced affinity to α2-3 sialosides, as noted for mutants of the H3 A/Hong Kong/156/1997 virus (52). But it was notable that significant binding to a natural, branched α2-6 biantenary glycan (nos. 56 and 57) was observed for both the double mutant and the single G228S mutant (Fig. 5H). Although the glycan composition of lung epithelia have not been analyzed in detail, the mammalian sialyltransferase that produces α2-6–linked structures on many human tissues (53, 54) is found in lung epithelial cells (55–57). Thus, these two effects could offer advantages for an H5N1 virus to adapt to a human host. Decreased binding to α2-3–linked glycans would help circumvent the inhibitory effects of respiratory mucins (58), whereas increased binding to biantenary N-linked glycans with α2-6–linked sialic acids would allow the virus to attach to the surface of epithelial cells that express this carbohydrate receptor (55–57). In this regard, human H1 viruses before 1957 were reported to bind sialic acid receptors with both α2-3 and α2-6 linkages; post 1957 viruses were specific only for α2-6 linkages (37). These binding patterns suggest that, once a foothold in a new host species is made, the virus HA optimizes its specificity to the new host. It is noteworthy that, of the HAs tested on the array, the humanized avian H1 (Dk76) double mutant (E190D,G225D) (Fig. 5C) and the human H3 HA (A/Moscow/10/1999) (35) did not bind α2-6 biantenary glycans, in contrast to 1918 South Carolina H1 HA and human H1, A/Texas/36/1991 (35). Therefore, the HAs of some viruses may be able to increase avidity through interaction with such bivalent structures on N-linked glycans, whereas, for others, the geometry of the bivalent structure appears to restrict binding to linear sequences containing α2-6

![Fig. 5.](http://science.sciencemag.org/) Glycan microarray analysis of mutants of Viet04 and Dk76. Mutations of an avian H1, Dk76: (A) E190D, (B) G225D, and (C) E190D and G225D were generated and subjected to glycan microarray analysis. Both positions were reported to be important for conversion of α2-6 receptor specificity of the human 1918 virus HA to avian α2-3 specificity (35, 45). These mutations did indeed result in exclusive α2-6 specificity for this avian H1 HA. (D to F) Consequently, Viet04 mutations were generated at the same positions, but they did not result in a switch of receptor specificity, except to 6'-sialyllactose, although they did result in decreased α2-3 binding, particularly to nonsulfated glycans (compare Fig. 4A). (G to I) Viet04 was mutated at positions 226 and 228, known to be important for H3 HA α2-6 receptor adaptation. Again, no clear switch in receptor specificity was observed, although binding to biantenary α2-6 moieties was observed, as well as reduced α2-3 binding in the double and single (Q226L) mutant. Graphs are generated as described in the legend for Fig. 4 and labels to the introduced mutations.
linkages. Thus, although human viral HA s have a primary specificity for α2-6 linkages, each may use a different spectrum of sialic receptors for cell entry.

All key residues within the RBD are conserved in the majority of H5 strains that have infected humans (fig. S5). However, two A/Hong Kong/2003 (HK2003) isolates acquired a S227N mutation within the binding site, whereas as a double mutation (E216R,P221S) in the 220-loop is observed in all 2003-05 isolates (fig. S5). The possible effect of these natural mutations on Viet04 HA binding specificity (Table 1) was, therefore, assessed. The S227N mutation had comparable specificity to that of Viet04, with the exception of increased binding, particularly for branched α2-3 fucosylated glycans (nos. 26 to 29) and for 6-sialylated N-acetylgalactosamine (GalNAc) (no. 20) (fig. S6A) (59, 60), contrary to previous reports that HK2003 isolates had increased affinity toward α2-6 analogs, but decreased affinity toward α2-3 analogs (39). However, in a previous study from a 1997 isolate, such changes were also not observed (52), although Viet04 differs at a number of other positions around the RBD compared with the Hong Kong isolates that could account for this difference (61) (Fig. 3A). Reverse R216E and S221P mutants were also generated, as well as the double mutant (R216E,S221P), but the R216E mutant expressed poorly and could not be analyzed. However, only the double mutant is found in natural isolates, suggesting a pressure to select for both mutations, which possibly are related to the HA stability. Whereas Viet04 HA binds to branched fucosylated sialosides (nos. 26 to 29) (Fig. 4A), the S221P mutation showed weaker binding, whereas the double mutant abrogated binding to all branched fucosylated glycans unless sulfated (no. 25) (fig. S6, B and C). In the Viet04 HA structure, these residues hydrogen bond to an adjacent monomer in the trimer (Arg216 with AsnG169). The glycans are stabilized at Asn 34 by a symmetric-related monomer.

epithelial cells. These combined effects could allow the Viet04 virus to escape entrapment by mucins and increase the likelihood of binding to and infection of susceptible epithelial cells (32). Thus, such mutations provide one possible route by which H5 viruses could gain a foothold in the human population, although it is possible that other, as yet unidentified, mutations may allow the H5N1 virus to effect a switch in receptor specificity.

This glycan microarray technology can, therefore, be used to analyze not only existing viral HA s, but as we show here, to identify mutations that enable adaptation of the remaining influenza serotypes into the human population. Monitoring such changes in the “receptor binding footprint” in the field on whole viruses using the glycan microarray could be invaluable in the identification of emerging viruses that could cause new pandemics or epidemics.

References and Notes
1. WHO (www.who.int/en/).
9. Materials and Methods are available as supporting material on Science Online.
10. Viet04 HA at a concentration of 9 mg/ml was used to grow crystals in sitting drops with a precipitant solution of 22% polyethylene glycol 2000 and 0.1 M Hepes, pH 6.55 (see also supporting online material).
11. 1918 H1 HA0 (PDB: 1dr8), truncated to remove residues around the cleavage site, was used as the initial MR model. The final Rf, Rfree, and Rvalues were 26.9 and 31.9% respectively at 2.9 Å resolution. The crystal asymmetric unit contains six hemagglutinin monomers (six HA monomers in two noncrystallographic trimers and three HA monomers that each form one-third of three crystallographic trimers) with an estimated solvent content of 57% based on a Matthews’ coefficient (Vm) of 2.9 Å3/Don (fig. S2). For comparison with previous structures, the Viet04 sequences are numbered as for the 1918 H1 structure, Viet04 residues are labeled by the preceding residue with a letter (e.g., AsnA34).
16. HA binding can be analyzed not only for sialic acid—linkage preference, but also for additional features, such as charge; glycan length; or additional sulfation, fucosylation, and sialylation. Among the 265 glycans currently imprinted on the array, 6 are glycoproteins; 38 have sialic acids with α2-3 linkages; 16 have α2-6 linkages; 7 have α2-8 linkages; and a further 16 are β-linkages, modified sialic acid analogs, or glycolylsialic acid glycan. (See table S4 for the glycans analyzed in this study. Of the α2-6 sialosides, only natural full-sized N-linked glycans represented on the array are the biantenary structures (nos. 56 and 57). The remaining sialosides are fragments or terminal sequences found on glycoproteins. For full information on the array, contact the Consortium for Functional Glycomics (www.functionalglycomics.org). Previous binding data using this technology and cell-based assays with whole viruses show that N-linked glycans close to the receptor-binding site can affect receptor binding through steric hindrance (32, 33). Insect cells do not produce complex glycans containing terminal galactose and/or sialic acids, as seen in mammalian cells, although high-mannose glycans are produced (64). However, because of the presence of the influenza sialidase, complex glycans of influenza HA s usually terminate only in galactose, and thus the size of the N-glycans elaborated by insect cells approximate to the size of the complex N-glycans in mammalian host cells. Thus, any increase in complexity of the HA function is still unknown. Indeed, results for the avian H3 HA (A/Duck/ Ukraine/1/1963), published recently (35), are in agreement with previous whole viral studies (65). However, independent studies are ongoing to develop the array for whole-virus analysis so that a direct comparison can be made. Such initiatives are important because of the ingestion of whole-virus arrays, but as we show here, to identify mutations that enable adaptation of the remaining influenza serotypes into the human population. Monitoring such changes in the “receptor binding footprint” in the field on whole viruses using the glycan microarray could be invaluable in the identification of emerging viruses that could cause new pandemics or epidemics.

www.sciencemag.org

SCIENCE VOL 312 21 APRIL 2006

Downloaded from http://science.sciencemag.org on April 13, 2017

409

RESEARCH ARTICLES

At An1/An2, an additional mannoside was visualized because of stabilization by Ily14 and main-chain amide of Val7, in a symmetry-related monomer.
We present a technique for simultaneous focusing and energy selection of high-current, mega–electron volt proton beams with the use of radial, transient electric fields (10^7 to 10^10 volts per meter) triggered on the inner walls of a hollow microcylinder by an intense subpicosecond laser pulse. Because of volatility proton beams with the use of radial, transient electric fields (10^7 to 10^10 volts per meter) triggered on the inner walls of a hollow microcylinder by an intense subpicosecond laser pulse. Because of...
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/312/5772/404

Permissions Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl