Response to Comment on “Transitions to Asexuality Result in Excess Amino Acid Substitutions”

Susanne Paland1* and Michael Lynch2

Asexual populations experience a reduction in the efficiency of selection when compared with sexual populations. Because asexual lineages of Daphnia pulex exhibit no consistent change in mitochondrial base-composition bias, Butlin suggests that this bias is not maintained by selection. On the basis of frequencies of polymorphic directional base changes, we suggest that it predominantly reflects mutation bias.

Base-composition bias is a well-known feature of genomic segments and entire genomes. Unequal frequencies of the four bases may be due to mutation bias, maintained by natural selection, or result from a balance between these two forces (1, 2). If mostly maintained by selection, base-composition bias will change when the efficiency of selection is compromised, with the direction and magnitude of change depending on the relative power and direction of pressure from both mutation and selection.

We recently documented reductions in the efficiency of selection in mitochondrial protein-coding genes of asexual lineages of Daphnia pulex (3). Butlin (4) argues that these asexual lineages should exhibit noticeable and consistent base-composition bias. Using parsimony, we estimate that the mean genetic distance separating an asexual D. pulex from its most recent sexual ancestor equals 23.56 changes across the 13,575 bases of mitochondrial DNA (mtDNA) sequenced. An average of ~90%, or 21.20 changes are transitions, that is, directional changes from A to G or T to C (AT > GC), and from G to A or C to T (GC > AT). Because of their low frequency (~5%), AT > CG and GC > TA transversions can be ignored in our calculations. The mean proportion of A+T bases in the 14 sexual mitochondrial genomes equals 61.5%. Following Butlin’s reasoning (4), we assume that selection maintains stationarity of base composition in sexuals and that mutation bias is absent so that the probability of mutation for a given base would be proportional to its frequency in the genome (a rather unrealistic assumption, particularly in mitochondrial DNA). If selection were absent in asexuals, a typical asexual branch would have accumulated an average of 13.04 changes from AT > GC [21.20 changes × 0.615 (frequency of A+T bases)] and 8.16 changes from GC > AT [21.20 changes × 0.385 (frequency of G+C bases)], reducing the mean %A+T from 61.5% [(8348.63 A+T bases/13,575 total bases) × 100] to 61.46% [(8343.75 A+T bases/13,575 total bases) × 100]. Even in the absence of mutational stochasticity, this difference would be statistically difficult to detect given that the standard error around the mean %A+T in the 14 sexual genomes equals 0.027735%.

The reasons for mitochondrial base-composition bias may be better investigated using a method (5) that is analogous to the McDonald-Kreitman test of neutral molecular evolution. Using this method, we determine the direction of polymorphic base changes and compute the ratio of the numbers of AT > GC to GC > AT transitions along external (EAT/E GC) and internal (IA T/IG C) branches of our phylogeny. The ratios will be close to 1 and equal when base-composition bias is stationary and a result of mutation bias. This is because under stationarity, the frequency of changes from AT > GC must equal that from GC > AT, and under neutrality, patterns of variability observed in the more recent and the more distant past reflect the same mutation process. When using silent base changes, which do not result in a change of the encoded amino acid and are therefore least likely to be affected by selection, we find that estimates for EAT/E GC and IAT/IG C are not significantly different from 1 (sexual branches: EAT/E GC = 1.012, G = 0.003, P = 0.956; IAT/IG C = 1.138, G = 0.257, P = 0.612; asexual branches: EAT/E GC = 0.942, G = 0.059, P = 0.807; IAT/IG C = 0.727, G = 0.236, P = 0.627) and not significantly different from each other (sexual branches: G = 0.241, P = 0.624; asexual branches: G = 0.268, P = 0.605). Even when the analysis includes all observed base changes, EAT/E GC and IAT/IG C are not significantly different from 1 (sexual branches: EAT/E GC = 1.016, G = 0.008, P = 0.929; IAT/IG C = 1.135, G = 0.315, P = 0.574; asexual branches: EAT/E GC = 0.974, G = 0.020, P = 0.888; IAT/IG C = 1.00, G = 0.000, P = 1.000) and not significantly different from each other (sexual branches: G = 0.298, P = 0.585; asexual branches: G = 0.004, P = 0.951). These results show that base composition has been stationary in both sexuals and their asexual derivatives and suggest that neutral mutation pressure cannot be rejected as the main determinant of base-composition bias in this species.

References and Notes
6. This research was supported by a Hochschuldozentenprogramm III Doctoral Fellowship granted by the German Academic Exchange Service (DAAD) to S.P., and by NSF grants DEB-0196450 and EF-0328516 and NIH grant GM36827 to M.L.

1 May 2006; accepted 10 August 2006.

*To whom correspondence should be addressed. E-mail: spaland@indiana.edu

1Center for Genomics and Bioinformatics, 2Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA.
Response to Comment on "Transitions to Asexuality Result in Excess Amino Acid Substitutions"
Susanne Paland and Michael Lynch

Science 313 (5792), 1389.
DOI: 10.1126/science.1128745

http://science.sciencemag.org/content/313/5792/1389.3

This article cites 4 articles, 2 of which you can access for free
http://science.sciencemag.org/content/313/5792/1389.3#BIBL

Terms of Service

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.