Comment on “Preindustrial to Modern Interdecadal Variability in Coral Reef pH”

Richard J. Matear* and Ben I. McNeil

Based on the boron isotopic composition of coral from the southwestern Pacific, Pelejero et al. (Reports, 30 September 2005, p. 2204) suggested that natural variations in pH can modulate the impact of ocean acidification on coral reef ecosystems. We show that this claim cannot be reconciled with other marine carbon chemistry constraints and highlight problems with the authors’ interpretation of the paleontologic data.

Pelejero et al. (1) analyzed the boron isotope composition of *Porites* coral from the southwestern Pacific and reported large interdecadal variations in pH (between 7.9 and 8.2) with a strong periodicity of about 50 years. This implies that natural pH variability in the ocean is greater than pH variation attributed to anthropogenic factors (a decrease of 0.1 pH units since 1880). Pelejero et al. argue that the implied natural pH variability cannot be associated with variations in either sea surface temperature (SST) or sea surface salinity (SSS). Instead, they attribute the pH variation to “coral reef calcification combined with limited flushing of reef water exerting an important local control over the buildup of partial pressure of CO$_2$ (pCO$_2$) within the reef.” However, they do not calculate the implied pCO$_2$ magnitude associated with such a large pH change. If we use the observed water properties (SST = 25°C, SSS = 35.3) and the authors’ assumption of constant alkalinity (2300 mol/kg), the range in pH implied from their boron isotope measurements must be associated with interdecadal pCO$_2$ variations between 250 and 600 parts per million (ppm) (Fig. 1, points A and B). Because preindustrial atmospheric pCO$_2$ values were about 280 ppm, the inferred estimate of pH range implies that pCO$_2$ within the seawater of the coral reef was maintained at levels up to double that of the atmosphere for a decade. However, this interpretation is unrealistic for two reasons. First, the equilibration rate of CO$_2$ for the ocean is less than 1 year, and even shorter for very shallow reef environments where the observations in (1) were collected. The implication that pCO$_2$ can build up over 300 ppm beyond the atmospheric concentration on a decadal time scale is not possible because exchanges of CO$_2$ with the atmosphere would bring the pCO$_2$ of the water back to a value that is in equilibrium with the atmosphere. Second, if pCO$_2$ were to experience such large variations as suggested by the pH changes, this would drive large changes in air-sea flux of CO$_2$. Such changes would in turn alter the isotopic composition of dissolved inorganic carbon (δ$_{DIC}$) because the air-sea flux process fractionates 13CO$_2$ preferentially relative to 12CO$_2$. Therefore, we would expect to find clear correspondence between the interdecadal variability in the calculated pH and the observed δ$_{DIC}$, which is not the case.

Alkalinity changes could potentially account for the large pH variations reported by Pelejero et al. However, to satisfy the implied pH variations would require an interdecadal change in alkalinity from 2300 mol/kg to 1000 mol/kg (Fig. 1, points A and C). These alkalinity changes are unrealistically large given that the typical variations within the studied section of the Great Barrier Reef are only about 40 mol/kg (4, 5). Other studies on coral reefs in the Indo-Pacific show maximum alkalinity variability of 100 μmol/kg (6, 7), far less than the 1300 μmol/kg that is required over decadal periods in the Pelejero et al. study. Calcification is the main process that reduces alkalinity of seawater around the reef, but the calcification rates of the corals used to estimate the pH in (1) do not show any correlation with the pH variations. Further, empirical studies of coral reef calcification show declines in calcification as the pH declines (8), which is counter to the trend required to produce the inferred pH variability. Therefore, explaining the large pH variability in terms of changes in alkalinity also appears unrealistic.

Ocean acidification is clearly a threat to coral reef ecosystems, and the implication of the Pelejero et al. study is that these ecosystems are subject to large natural variations in pH. This interpretation has important implications for assessing the response of coral reefs to future ocean acidification. Although boron isotopes have been shown to be a useful pH proxy, our carbon chemistry calculations show that the Pelejero et al. interpretation of the paleontologic data suggesting large decadal changes in pH is not consistent with acceptable changes in either pCO$_2$ or alkalinity. This ultimately casts doubt on the notion that corals have already undergone such large natural variations in pH and are capable of adapting to the pH changes projected to occur over this century.

References
Comment on "Preindustrial to Modern Interdecadal Variability in Coral Reef pH"
Richard J. Matear and Ben I. McNeil

Science 314 (5799), 595.
DOI: 10.1126/science.1128198