Magnetic Molecule Isolation System

The MultiMACS Separator is a magnetic molecule isolation instrument for manual or automated use. Up to 96 samples such as mRNA, protein, virus particles, or biomolecule complexes can be extracted and purified in parallel via gentle, column-based procedures. This compact instrument can be integrated into robotic systems or operated manually on the bench, and centrifugation and vacuum steps are not needed. The isolation procedures rely on the small, paramagnetic MACS MicroBeads coupled to oligo (dT), protein A, protein G, streptavidin, or antibody molecules. Even small amounts of target molecules are captured.

Milenyi Biotec For information +49 2204-8306-0 www.milenyibiotech.com

Genotoxicity Screening Assay

GreenScreen HC is a novel human cell–based genotoxicity screening assay. Developed in a simple microplate format requiring less than 1 mg of compound, the assay is easily automated using standard laboratory equipment. According to the manufacturer, the GreenScreen HC’s combination of high specificity and sensitivity make it the first in vitro mammalian cell assay suitable for early candidate screening. The test is designed to avoid the high number of positive results that can lead to time-consuming and expensive animal studies at the preclinical stage.

Gentronix For information +44 161 606 7268 www.gentronix.co.uk

Real-Time PCR System

The StepOne Real-Time PCR System provides an easy and cost-effective way to conduct real-time polymerase chain reaction (PCR) experiments in a variety of applications that include gene expression, viral load, and genotyping experiments. Beginning users can benefit from the intuitive software wizards that guide them through set up, operation, and analysis. Experienced users seeking a personal real-time PCR system can customize experiment design parameters such as thermocycling protocols and nucleic acid template types. The low-throughput system features a space-saving small footprint.

Applied Biosystems For information 800-327-30022 www.appliedbiosystems.com

Faster RT-PCR

FastLane Kits streamline real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis of cultured cells. By eliminating the need for RNA purification, the kits allow users to carry out real-time RT-PCR directly from cell lysates. The kits are suitable for experiments requiring rapid, high-throughput gene expression analysis, such as validation of small interfering RNA-mediated gene knockdown. The kits take only 12 minutes to prepare cell lysate, which can be used directly in reverse transcription or in real-time, one-step RT-PCR. To ensure reliable gene expression analysis in subsequent real-time PCR, RNA is immediately stabilized upon cell lysis and genomic DNA is effectively eliminated using a novel buffer.

Qiagen For information +49 (0) 21033-16410 www.qiagen.com

Homogenizer

The Dispomix instrument for sample homogenization and dispersion combines sterility with safety and ease of use. The closed, disposable Dispomix Tubes protect the sample and the environment from the moment of sampling to the final product transfer without the need for further sample manipulation. A septum ensures clean liquid transfers prior to and after the processing on the Dispomix Drive. The tube effectively avoids cross-contamination, aerosols, or contact by personnel with potentially infectious or toxic material.

Xiril For information +41 55 254 7777 www.xiril.com

Orange Fluorescent Dye

A novel orange fluorescent dye can be used as a nuclear stain with living cells or as a cell location dye to define cell perimeter in a variety of cell-based assays. Water-soluble and membrane-permeable, CyTRAK Orange is suitable for live-cell imaging applications such as nucleus/cytoplasmic and cytoplasm/cytoplasmic membrane translocations, nucleus/cytoplasmic and cell/cell boundary interactions as well as cell-based high-content screening and high-throughput screening, fixed-cell, and fluorescence in situ hybridization assays. This versatile fluorescent dye is compatible with existing protocols and usable across a wide range of imaging platforms. It can be used in live cells in combination with common fluorophores such as green fluorescent protein fusions, fluorescein isothiocyanate (FITC) labeled antibodies, and far-red dyes. It permits the rapid staining of the nuclei of live or fixed cells, fluoresces at 615 nm, and is stable both photochemically and biologically. No cell lysing, washing, or ribonuclease is needed for use.

Axxora For information 800-900-0065 www.axxora.com

Modular Detection Platform

The Paradigm Detection Platform is a modular system that allows easy configuration by the user. It features a selection of cartridges that can be interchanged in less than five minutes to meet different assay needs. Designed for labs with multiple users and applications, the high-throughput detector can read in formats from 6 to 1536 wells. Eight different cartridges will be available, based on detection modes including fluorescence polarization, time-resolved fluorescence, dual-fluorescence (including fluorescence resonance energy transfer), and luminescence. A monochromator-based absorbance cartridge will also be offered. The system software comes with a portfolio of generic protocol templates for the most common detection measurements. Assay protocols for third-party chemistry kits are also included.

Beckman Coulter For information 714-993-8955 www.beckmancoulter.com

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and government organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
New Products

Science 315 (5819), 1733.
DOI: 10.1126/science.315.5819.1733

ARTICLE TOOLS http://science.sciencemag.org/content/315/5819/1733

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service