Gender Disparity in Liver Cancer Due to Sex Differences in MyD88-Dependent IL-6 Production

Willscott E. Naugler,oshiharu Sakurai, Sunhwa Kim, chin Maeda, KyoungHyun Kim, Ahmed M. Elsharkawy, Michael Karin

Hepatocellular carcinoma (HCC), the most common primary liver cancer, is a dreaded complication of chronic liver disease that occurs in the setting of risk factors such as hepatitis B (HBV) and hepatitis C (HCV) viral infections, alcoholic liver disease, hemochromatosis, and nonalcoholic steatohepatitis (1). Most HCC occurs in cirrhotic livers after years of chronic inflammation. The 5-year survival rate for patients with HCC, the increasing incidence of which is likely due to the spread of HCV (2), is only about 7%. Notably, men are about three to five times more likely to develop HCC than women (3). A similar or even more pronounced gender disparity is seen in rodent HCC models (4, 5). Furthermore, administration of estrogens to male mice inhibits development of chemically (DEN)-induced HCC (6). Nonetheless, the mechanisms that account for this gender disparity and the anticarcinogenic activity of estrogens are unknown.

Inflammation is a major contributing factor to carcinogenesis (7). HCC represents a classic case of inflammation-linked cancer (8), and chemically or genetically induced HCC depends on inflammatory signaling (9, 10). To understand the mechanisms underlying gender disparity in HCC, we used the chemical carcinogen diethylnitrosamine (DEN), which causes HCC in 100% of male mice but only in 10 to 30% of female littermates (5, 6). The pathogenesis of HCC in this mouse model differs from that in humans and thus may not be directly comparable to human HCC. Nevertheless, the mouse model of DEN-induced HCC has a histology and genetic signature similar to that of human HCCs with poor prognosis (11) and recapitulates a dependence on inflammation and gender disparity seen in human HCC.

Interleukin-6 (IL-6) is a multifunctional cytokine largely responsible for the hepatic inflammation and feminization of the liver, which may contribute to the gender disparity seen in rodent HCC models (4, 5). To understand the mechanisms underlying gender disparity in inflammatory signaling (8), we performed microarray analysis of DEN-injected male and female wild-type (WT) mice. Raw microarray data accession number is GSE7537 (GEO database).

Supporting Online Material

www.sciencemag.org/cgi/content/full/1140247/DC1

Materials and Methods SOM Text Figs. S1 to S6 Tables S1 to S4

22 January 2007; accepted 10 May 2007
Published online 24 May 2007
10.1126/science.1140247
Include this information when citing this paper.

References and Notes

10. Materials and methods are available on Science Online.
26. We thank N. Aubin-Horth, K. Brown, M. De Pristo, F. Fontanillas, C. Meiklejohn, and V. Savage for helpful comments on the manuscript and the Bauer Center for the use of their facilities. C.R.L. was supported financially during this work by the Natural Sciences and Engineering Research Council of Canada, the Fonds québécois de la recherche sur la nature et les technologies, and the Frank Knox Memorial Foundation at Harvard University.

Fig. 1. Differential IL-6 production after chemically induced liver injury. (A) Concentration of IL-6 in serum of male and female WT mice after injection of DEN (100 mg per kg of body weight; n = 3 mice per time point). (B) IL-6 mRNA levels in livers of male, female, or ovarietomized (OVX; ovarietomy was done 2 weeks before DEN administration) female mice 4 hours after DEN injection. E2 (50 µg/kg) in corn oil was injected intraperitoneally 2 hours before DEN was administered. (C) Male B6 mice (n = 3) were injected with ERα-specific agonist propyl-pyrazole-triphenol (PPT; 5 µg/kg in corn oil) 2 hours before DEN injection, and serum IL-6 was measured at the indicated times after DEN injection. Results in (A) to (C) are representative of three experiments.
Fig. 2. Lower incidence of HCC tumors and longer survival of IL-6−/− mice. (A) Livers of 8-month-old DEN-treated mice. Multiple HCCs are seen only in WT male liver. (B) Incidence of HCC (>0.5 mm) in WT male (n = 14), WT female (n = 13), IL-6−/− male (n = 14), and IL-6−/− female (n = 15) mice 8 months after DEN (25 mg/kg) injection. Asterisks indicate significant (P < 0.05; Student’s t test) differences relative to WT male mice. (C) Survival curves of WT and IL-6−/− mice injected with DEN (25 mg/kg) at 15 days of age (n = 15), and IL-6−/− mice 8 months after DEN (25 mg/kg) injection. Asterisks indicate significant (P < 0.05; Student’s t test) differences relative to WT male mice. (D) Six-week-old male B6 mice (n = 3) were injected with E2 (50 mg/kg) in corn oil or vehicle 2 hours before DEN injection, and serum ALT was measured 50 hours later. (E) Male mice (n = 3 per point) were injected with PPT (5 mg/kg in corn oil) or vehicle 2 hours before DEN injection, and serum ALT was measured 50 hours later. All results for (A) to (D) are means ± SE, and asterisks indicate P < 0.05 (Student’s t test). (F) Cells from livers of male, female, and IL-6−/− mice were lysed at the indicated times after DEN injection. STAT3 and JNK activation, and IκBα degradation, were assessed by separating with SDS–polyacrylamide gel electrophoresis and immunoblotting with antibodies to the indicated proteins. Phosphorylation (P) of STAT3 and JNK indicates activation. Phospho-STAT3 and STAT3 were from one gel, as were PPT (5 mg/kg in corn oil) or vehicle 2 hours before DEN injection, and serum ALT was measured 50 hours later. All results for (A) to (D) are means ± SE, and asterisks indicate P < 0.05 (Student’s t test).
ministration of estradiol (E2) to male mice reduced IL-6 mRNA abundance, whereas ovariectomy augmented accumulation of IL-6 mRNA in females. The latter was largely prevented by E2 administration (Fig. 1B), as well as by the estrogen receptor α (ERα) agonist propylpyrazole-trisphenol (PPT) (Fig. 1C). No gender differences were seen in IL-6 expression or hepatocyte proliferation after partial hepatectomy (Fig. S1, A and B).

Differences in compensatory proliferation matched the degree of injury, such that IL-6−/− males exhibited fewer proliferating hepatocytes than WT counterparts at 36 and 48 hours after DEN administration (Fig. 3C). Treatment of male mice with an antagonistic antibody that blocks IL-6 receptor signaling also provided protection from DEN-induced liver injury (Fig. S5).

Consistent with previous publications (19, 20), DEN-induced liver injury was reduced in females or males given E2 2 hours before DEN administration (Fig. 3D). Injury was increased in ovariectomized females and reduced after E2 administration. Absence of IL-6 eliminated gender-related differences by reducing the extent of injury in males (Fig. 3D). DEN-induced apoptosis (Fig. 3E), necrosis (Fig. S4B), and compensatory proliferation (Fig. 3F) were greater in male than in female mice. Administration of exogenous IL-6 augmented DEN-induced damage in both untreated and E2-treated male mice (Fig. 3G). The reduction of injury by E2 in IL−6−/− treated mice suggests that E2 may also attenuate downstream IL-6 signaling. Similar gender-related differences in liver injury were seen after administration of CCl4 (Fig. S2).

Using mice deficient in either ERα or ERβ, we found that ERα is the receptor responsible for the protective effect of E2 (Fig. 3H), which was confirmed by decreased liver injury in male mice pretreated with the ERα-specific agonist PPT (Fig. 3I).

Another estrogen analog, tamoxifen, was found to act as a weak antagonist in this system and increase liver injury (fig. S6A). Absence of ERβ also increased DEN-induced injury in females (fig. S6A).

IL-6 activates the transcription factor STAT3 (21). The activated form of STAT3 was absent in livers of IL−6−/− mice, and WT female mice exhibited less STAT3 activation than males after DEN administration (Fig. 3J). Female mice or IL−6−/− mice of both genders also exhibited reduced activation of the mitogen-activated protein kinase JNK (c-Jun N-terminal kinase) at 12 hours after DEN administration, whereas little if any difference was seen in DEN-induced IκBα degradation. Sustained activation of JNK is required for DEN-induced liver injury as well as hepatocarcinogenesis (5, 10).

Estrogens inhibit IL-6 promoter activity by decreasing the activity of the transcription factors nuclear factor κB (NF-κB) and C/EBPβ (22). KCs from male mice produced IL-6 when incubated with either bacterial lipopolysaccharide (LPS) or cellular debris released by necrotic hepatocytes (Fig. 4A). Both responses were strongly dependent on IKKβ or the Toll-like receptor (TLR) adaptor protein MyD88 and were inhibited if the KCs were first incubated with E2 (Fig. 4A). We speculated that necrotic debris released by DEN-injured hepatocytes triggers cytokine production and compensatory proliferation (5). The TLR adaptor MyD88, which was required for IL-6 induction by necrotic debris, was also required for DEN-induced production of IL-6 in vivo (Fig. 4B) and for induction of liver injury (Fig. 4C). MyD88 was also required for optimal CCl4-induced accumulation of IL-6 mRNA (fig. S7). MyD88 is also required for induction of liver injury in response to hypoxia (23) and LPS (24). Furthermore, MyD88 ablation suppressed DEN-induced hepatocarcinogenesis. MyD88−/− male mice developed fewer HCCs (Fig. 4D) and smaller (Fig. 4E) HCC tumors than WT male mice.

Administration of DEN also leads to modest accumulation of tumor necrosis factor−α (TNF-α) mRNA (5), another proinflammatory cytokine thought to be involved in liver regeneration (25). However, TNF-α expression did not exhibit gender-dependent differences (fig. S8A), and ablation of TNF-α or its type 1 receptor (TNFR1) had little if any effect on production of IL-6 in response to DEN (fig. S8B). Thus, IL-6 induction and liver injury are dependent on signaling via MyD88 but not through TNFR1. Accordingly, ablation of TNFR1 had no significant effect on DEN-induced hepatocarcinogenesis (fig. S8, C and D).

Our results explain why females are less prone to liver cancer than males. This study and others (5, 10) show a strong correlation between the amount of liver damage during acute toxicity and inflammation and the extent of HCC development. We found that both liver injury and
Compensatory proliferation were strongly dependent on IL-6 and that the absence of this tumor-promoting cytokine resulted in almost complete inhibition of DEN-induced hepatocarcinogenesis. IL-6 production by KCs was largely dependent on MyD88, an adaptor molecule that acts downstream of TLRs as well as IL-1 receptor (26). Because DEN is not a direct macrophage or KC activator (27), hepatocyte necrosis may be an intermediate in the pathway through which DEN or CCl4 exposure results in IL-6 production. Various macromolecules released by necrotic cells activate macrophages through TLRs, the receptors which in turn activate MyD88 (28, 29). TRIF, another TLR adaptor protein (26), is not required for DEN- or CCl4-induced IL-6 production and liver injury (27). MyD88 signaling, but not TNFRI signaling, was required for optimal DEN-induced hepatocarcinogenesis in male mice. DEN-induced hepatocarcinogenesis appears to depend on an inflammatory response, triggered by hepatocyte necrosis, that leads to production of IL-6. Estrogens, at concentrations present in females but not in males, suppress IL-6 production and therefore inhibit chemically induced liver carcinogenesis. A similar mechanism could account for the gender bias in liver cancer in humans. If so, estrogen-mimetic compounds capable of inhibiting excessive IL-6 production might be used to prevent progression of chronic liver disease to HCC in men.

References and Notes
15. Materials and methods are available as supporting material on Science Online.
27. In experiments performed in our laboratory, incubation of KCs or bone marrow–derived macrophages with DEN did not induce expression of IL-6 mRNA. DEN administration to TRIF−/− mice resulted in as much IL-6 induction as seen in WT mice.
30. We thank J. Feramisco for help with image capture and analysis and E. Karin for help with the surgical models. Supported by National Institute of Diabetes and Digestive and Kidney Diseases grant DK007202 (W.E.N.); Japan Society for the Promotion of Science (T.S.); Human Frontier Science Program (S.K.); and NIH grants ES004151 and ES006376, 3C1618, and the Superfund Basic Research Program (M.K.). M.K. is an American Cancer Society Professor.

Supporting Online Material
www.sciencemag.org/cgi/content/full/317/5834/121/DC1
Materials and Methods
Figs. 51 to 58
References
29 January 2007; accepted 4 June 2007
10.1126/science.1140485

Regulation of Spontaneous Intestinal Tumorigenesis Through the Adaptor Protein MyD88
Seth Rakoff-Nahoum and Ruslan Medzhitov*

Inflammation is increasingly recognized as an important component of tumorigenesis, although the mechanisms and pathways involved are not well understood. Tumor development is regulated by products of several modifier genes, but instructions for their tumor-specific expression are currently unknown. We show that the signaling through the adaptor protein MyD88 has a critical role in spontaneous tumor development in mice with heterozygous mutation in the adenomatous polyposis coli (APC) gene. We found that MyD88-dependent signaling controls the expression of several key modifier genes of intestinal tumorigenesis and has a critical role in both spontaneous and carcinogen-induced tumor development. This study thus reveals the important role of an innate immune signaling pathway in intestinal tumorigenesis.

Inflammatory responses contribute to carcinogenesis through multiple mechanisms (1–3). Activation of the transcription factor nuclear factor kB (NF-kB), a key mediator of inflammation, has a critical role in the regulation of tumor development resulting from chronic inflammation or exogenous mutagens (4, 5). NF-kB is activated by multiple stimuli (6), and it is currently unknown which pathway is critically involved in cancer-associated inflammation and the tissue repair response (7). The role of inflammatory and tissue repair responses in spontaneous carcinogenesis, independent of chronic inflammation or administration of exogenous carcinogens, has not yet been characterized. However, signaling through Toll-like receptors (TLRs) of the innate immune system to MyD88 (a signaling adaptor of TLRs) has a critical role in the control of tissue renewal responses (8–11).

A link between intestinal tissue renewal and tumorigenesis was established when the genetic basis of familial associated polyposis (FAP) was mapped to the APC gene (12). Germline and sporadic mutations in APC occur in >85% of FAP and >80% of sporadic colorectal tumors (12). A mouse model of spontaneous intestinal tumorigenesis was discovered in a forward genetic screen (13). These mice, designated ApcMin−/−, have a mutation in the APC gene and develop 60 to 80 intestinal adenomas, mostly at the distal small intestine (14). Given the role of the MyD88 signaling in intestinal tissue renewal and repair, we investigated the role of this pathway in spontaneous intestinal carcinogenesis in ApcMin−/− mice. To examine a potential role of the MyD88 signaling pathway in spontaneous intestinal tumorigenesis, we generated ApcMin−/− mice on MyD88-sufficient and -deficient backgrounds and analyzed sex- and age-matched cohorts. On average, ApcMin−/− mice die within 6 months of age from complications of intestinal tumors (15). In contrast, mortality of ApcMin+/+ MyD88−/− mice was dramatically reduced as compared with ApcMin+/+ littermate controls (Fig. 1A). We investigated the red blood cell (RBC) status of these mice, a marker of intestinal tumorigenesis, and found that the anemia observed in ApcMin+/+ mice was significantly ameliorated in ApcMin+/+ MyD88−/− mice (Fig. 1B). MyD88-dependent signaling therefore contributes substantially to the severe mortality and morbidity caused by the activation of Apc.

The number of visible polyps (≥0.5 mm in diameter) was next quantified by stereoscopic microscopy. The number of macroadenomas in the small intestines or colon of ApcMin+/+ MyD88−/− mice was reduced compared with that in ApcMin+/+ controls (Fig. 2A and fig. S1). Loss of MyD88 decreased the number of small intestinal tumors

Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA.

*To whom correspondence should be addressed. E-mail: ruslan.medzhitov@yale.edu
CORRECTIONS & CLARIFICATIONS

ERRATUM

Post date 4 December 2009

Reports: “Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production” by W. E. Naugler et al. (6 July 2007, p. 121). The originally published Fig. 3B inadvertently duplicated Fig. 3E. The corrected 3B, along with originally published 3E, is provided here.

Corrected Figure 3B

Original (and correct) Figure 3E
Gender Disparity in Liver Cancer Due to Sex Differences in MyD88-Dependent IL-6 Production
Willscott E. Naugler, Toshiharu Sakurai, Sunhwa Kim, Shin Maeda, KyoungHyun Kim, Ahmed M. Elsharkawy and Michael Karin (July 6, 2007)

Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools
Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/317/5834/121

Permissions
Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl