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AUTHORS’ SUMMARY

How many genes are mutated in a
human tumor? Answering this
question would have seemed like

science fiction just a decade ago. However,
as a result of advances in technology, we
have been able to answer this question in
breast and colorectal cancers: There are ~80
DNA mutations that alter amino acids in a
typical cancer. Examining the overall
distribution of these mutations in different
cancers of the same type leads to a new
viewof cancer genome landscapes: They are
composed of a handful of commonly
mutated gene “mountains” but are domi-
nated by a much larger number of infre-
quently mutated gene “hills.”

The current study expands upon
previous work (1) and includes analysis
of the sequences of 20,857 transcripts
from 18,191 human genes, including the
great majority of those that encode
proteins. The genes were sequenced in
11 breast and 11 colorectal cancers. Any
gene that was mutated in the tumor but
not in normal tissue from the same patient
was analyzed in 24 additional tumors.
Selected genes were further analyzed in
another 96 colorectal cancers to better
define their mutation frequency and aid
subsequent bioinformatic analyses.

Statistical analyses suggested that most
of the ~80 mutations in an individual tumor were harmless and that <15 were
likely to be responsible for driving the initiation, progression, or maintenance of
the tumor. Though the numbers of mutant genes in breast and colorectal cancers
were similar, the particular genes that were mutated were quite different, as were
the type of mutations found. For example, mutations converting 5′-CpG to 5′-
TpG were much more frequent in colorectal than in breast cancers, indicating
differences in mutagen exposure or DNA-repair processes.

Themutational landscapes of cancers can be shown on amap onwhich each
gene is represented at a single point (see figure for the landscape for colorectal
cancers). The heights of the peaks reflect themutation frequency of each gene. A
few gene “mountains” are mutated in a large proportion of tumors; most genes
are mutated in <5% of tumors and are represented as “hills” in the figure. In the
lower panel, the mutated genes in two colorectal tumors are indicated by dif-
ferently colored dots. The mutated genes in the two tumors overlap to only a
small extent. These differences are likely to be the basis for thewide variations in

tumor behavior and responsiveness to
therapy.

Historically, the focus of cancer research
has been on the gene mountains, in part
because they were the only alterations that
could be identified with available technolo-
gies. However, our data show that the vast
majority of mutations in cancers do not
occur in such mountains. This new view of
cancer is consistent with the idea that a large
number ofmutations, each associatedwith a
small fitness advantage, drive tumor pro-
gression (2). It is the “hills” and not the
“mountains” that dominate the cancer
genome landscape.

Are these landscapes hopelessly com-
plex? The large number of "hills" actually
reflects alterations in a much smaller num-
ber of cell signaling pathways. Indeed,
pathways rather than individual genes ap-
pear to govern the course of tumorigenesis
(3). Accordingly, we devised methods to
classifymutant genes into commonly altered
pathways. Disruption of a pathway by
mutation in any one of its genetic compo-
nents would presumably lead to similar
changes in growth. The <15 driver muta-
tions in an individual tumor likely reflect
alterations in a similar number of pathways.

Sequencing alone cannot definitively
determine whether a specific gene “hill”

actually contributes to tumor formation.We therefore used various bioinformatic
and structural analyses to help determinewhichwere pathogenic. Integrationwith
functional studies will also be essential; indeed, several of the candidate cancer
genes identified in our study have been independently implicated in
tumorigenesis through functional studies reported by others.

In sum, our results make it clear that it is now “easy” to identify the genetic
alterations in cancers on a genome-wide scale. It is much more difficult to
elucidate the precise role of these alterations in tumorigenesis. The compendium
of genetic changes in individual tumors provides new opportunities for
individualized diagnosis and treatment of cancer. Taking advantage of these
opportunities is the major challenge for the future.
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A two-dimensional map of genes mutated in colorectal cancers, in
which a few gene “mountains” are mutated in a large proportion of
tumors while most “hills” are mutated infrequently. The mutations in
two individual tumors are indicated on the lower map. Note that
most mutations are outside hills or mountains and may be harmless.
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FULL-LENGTH ARTICLE

Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor
genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from
11 breast and 11 colorectal tumors and determined the sequences of the genes in the
Reference Sequence database in these samples. Based on analysis of exons representing
20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast
and colorectal cancers are composed of a handful of commonly mutated gene “mountains”
and a much larger number of gene “hills” that are mutated at low frequency. We describe
statistical and bioinformatic tools that may help identify mutations with a role in
tumorigenesis. These results have implications for understanding the nature and heterogeneity of
human cancers and for using personal genomics for tumor diagnosis and therapy.

Discovery of the genes mutated in human
cancer has provided key insights into the
mechanisms underlying tumorigenesis

and has proven useful for the design of a new
generation of targeted approaches for clinical
intervention (1). With the determination of the
human genome sequence and improvements in
sequencing and bioinformatic technologies, sys-
tematic analyses of genetic alterations in human
cancers have become possible (2–4).

Using such large-scale approaches, we re-
cently studied the genomes of breast and colorec-
tal cancers by determining the sequence of the
Consensus Coding Sequence (CCDS) genes, a
collection of the best-annotated protein-coding
genes (5). In this study, we have extended these
analyses to include examination of all of the
Reference Sequence (RefSeq) genes. The RefSeq

database is a comprehensive, nonredundant col-
lection of annotated gene sequences that repre-
sents a consolidation of gene information from all
major gene databases (6). The RefSeq database is
believed to include the great majority of human
gene sequences and represents the gold standard
in the field.

Sequencing strategy. The first step in our
approach was the design of primers that would
permit polymerase chain reaction (PCR)-based
amplification and analysis of coding exons in
the RefSeq database. Of the 20,857 transcripts
in the RefSeq database (representing 18,191
distinct genes), 14,661 transcripts were included
in the CCDS set. These CCDS genes were in
general not evaluated again; the only exceptions
were a small subset in which particular regions
of interest had been difficult to amplify and for
these, new PCR primers were designed. For the
remaining 6196 Refseq transcripts, 125,624
primers were designed and used to amplify the
coding exons. The entire list of primers used to
amplify the exons of the RefSeq genes (includ-
ing the CCDS genes) is provided in table S1.

The primers were used to PCR-amplify and
sequence the DNA from 11 breast and 11
colorectal cancers, as well as DNA frommatched
normal tissues of two patients. The samples used
for this analysis were the same as those used in
the previous study of CCDS genes (5). The
sequence data from this Discovery Screen were
assembled and evaluated using stringent quality
criteria (7), resulting in successful analysis of
93% of targeted amplicons. We used bioinfor-
matic and experimental strategies to distinguish
germline variants and artifacts of PCR or se-
quencing from true somatic mutations (fig. S1).
Genetic alterations found in the two normal sam-
ples and those present in SNP databases were
removed and sequence traces of the remaining
potential alterations were visually inspected to
remove false-positive calls in the automated anal-
ysis. After these steps, the amplicons of the re-
maining alterations were re-amplified from the
tumor DNA (to ensure reproducibility) and from
DNA of matched normal tissue (to remove un-
annotated germline variants). Finally, the putative
somatic mutations were examined “in silico” (by
computer analysis) to ensure that the alterations
did not occur as a result of mistargeted ampli-
fication of related regions of the genome (7).

To further evaluate the genes with somatic
mutations in the Discovery Screen, we deter-
mined their sequence in a Validation Screen of 24
additional samples of the same tumor type in
which the mutation was originally identified.
Methods similar to those noted above were used
to exclude germline variants, PCR and sequenc-
ing artifacts, and alterations due to mistargeted
amplification of related genomic regions. Ampli-
cons with putative somatic mutations were re-
amplified in DNA from the tumor and from
matched normal tissues to determine whether the
alterations were truly somatic.

Somatic mutations. Combining the data from
the current analysis with those previously ob-
tained in CCDS genes, we found that 1718
genes (9.4% of the 18,191 genes analyzed) had
at least one nonsilent mutation in either a breast
or colorectal cancer (Table 1 and table S3). The
great majority of alterations were single-base
substitutions (92.7%), with 81.9% resulting in
missense changes, 6.5% resulting in stop co-
dons, and 4.3% resulting in alterations of splice
sites or untranslated regions immediately adja-
cent to the start and stop codons (Table 1). The
remaining somatic mutations were insertions,
deletions, or duplications (7.3%). The mutation
spectrum of colorectal cancers differed from that
of breast cancers, and these spectra were similar
to those observed in the previous CCDS study
and in other analyses (4, 5). In this study, we
analyzed the nature of the nonsynonymous
mutations in more detail and found a very large
excess of C to T transitions at 5′-CpG-3′ in co-
lorectal cancers, representing 19 times as many
as expected from the representation of 5′-CpG-3′
sites in the coding regions of the genome. Sim-
ilarly, there was a marked excess of G to C trans-
versions at 5′-GpA-3′ sites in breast cancers,
representing 4.5 times as many as expected (7).

Passenger mutation rates. The somatic
mutations found in cancers are either “drivers”
or “passengers” (4). Driver mutations are causally
involved in the neoplastic process and are pos-
itively selected for during tumorigenesis. Passen-
ger mutations provide no positive or negative
selective advantage to the tumor but are retained
by chance during repeated rounds of cell di-
vision and clonal expansion.

We used two independent methods to esti-
mate the passenger mutation rates in the analyzed
cancers. First, we evaluated 23.8 Mb of chromo-
some 8 in 11 colorectal cancer samples similar to
those used in the Discovery Screen. This was
performed with high-density oligonucleotide mi-
croarrays containing every possible single-base
pair substitution. The tumors used for this anal-
ysis each had only one allele of chromosome 8
[i.e., they showed loss of heterozygosity (LOH)],
rendering the detection of sequence alterations
sensitive and reliable. A total of 151 somatic
mutations were identified in 262 Mb of tumor
DNA, and all but one of these were located in
noncoding regions. Thus, there were a total of
0.6 noncoding mutations per Mb analyzed (95%
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confidence interval: 0.52 to 0.64 mutations/Mb).
Because only one copy of chromosome 8 was
analyzed in these studies, the noncoding muta-
tion rate per diploid genome was inferred to be
1.2 mutations/Mb. We then performed detailed
LOH analyses of the 11 tumors used in the Dis-
covery Screen using 317,503 polymorphisms. An
average of 16% of polymorphic alleles showed
LOH. It is known from studies of human genetic
variation that the frequency of nonsynonymous
(amino acid–changing)mutations is approximately
half that of mutations in noncoding regions (8, 9).
After correcting for LOH and the difference in
mutation rates between noncoding and nonsynon-
ymous mutations, these analyses result in an
estimated passenger mutation rate of 0.55 non-
synonymous mutations per Mb of tumor DNA in
colorectal cancers (7).We consider this aminimum
estimate as the ratio of mutations in noncoding
regions to nonsynonymous mutations in coding
regions is likely to be higher in the germ line than
in tumors because of greater negative selection for
mutations in coding regions in the germ line.
Although we have not directly measured mutation
rates in noncoding sequences in breast cancers,
Stephens et al. have estimated that the rate of
nonsynonymous mutations in breast cancers is
0.33 per Mb, and we used this as our minimum
estimate for this tumor type (10).

Estimates of the passenger mutation rates
were also obtained through the quantification
of synonymous (silent) missense mutations in
this study. Because most synonymous changes
are expected to be biologically inert and there-
by not selected for or against during tumori-
genesis, such changes can be used as a tool to
estimate passenger mutation rates (11). The
analysis of synonymous mutations provided two
estimates of the nonsynonymous mutation rate
(7). One estimate was based on the ratio of non-
synonymous to synonymous mutations observed
in the human germ line (8, 9). The second es-
timate was derived by calculating the expected
ratio of nonsynonymous to synonymous changes
after accounting for codon usage of RefSeq
genes and the different mutation spectra observed

in colorectal and breast cancers. We considered
this estimate to be a maximum because it did not
take into account that nonsynonymous mutations
that retard cell growth will be selected against
during tumorigenesis.

Evaluating mutated genes. The mutational
data obtained can be used to identify candidate
cancer genes (CAN-genes) that are most likely
to be drivers and are therefore most worthy of
further investigation. In this study, we consid-
ered a gene to be a CAN-gene if it harbored at
least one nonsynonymous mutation in both the
Discovery and Validation Screens and if the total
number of mutations per nucleotide sequenced
exceeded a minimum threshold (7). Using these
criteria, we identified a total of 280 CAN-genes,
equally distributed between colorectal and breast
cancers (table S4, A and B, respectively). The
280 CAN-genes listed in table S4, A and B,
included most of the 191 CAN-genes identified
in Sjöblom et al. (5) but differed by virtue of the
inclusion of 114 new CAN-genes identified in
the additional 6196 transcripts sequenced, the
removal of data from a breast tumor with an ab-
normally high passenger mutation rate, the use
of an experimental rather than statistical defini-
tion of CAN-genes, and additional evaluation of
mutations in samples that had undergone whole-
genome amplification (7).

It is reasonable to assume that genes that
are mutated more frequently than predicted by
chance are more likely to be drivers. In this
study, we used a more sophisticated version of a
metric, called the cancer mutation prevalence
(CaMP) score, to rank genes by the number and
nature of the mutations observed (table S4, A
and B). To assess the likelihood that each of
these genes is mutated at a frequency higher than
the passenger mutation rate, we devised a meth-
od based on Empirical Bayes simulations (7).
Though the likelihoods depend on the passen-
ger rates (table S4, A and B), the rankings of
the genes by CaMP scores are similar regardless
of the assumed passenger mutation rates (rank
correlations > 0.9). CaMP scores thereby pro-
vide priorities for future studies that are inde-

pendent of many of the assumptions required to
calculate passenger probabilities.

To determine the mutation prevalence of a
subset of CAN-genes with more precision, we
analyzed 40 CAN-genes in a separate cohort of
96 patients with colorectal cancers (7). The genes
chosen were in biological pathways of interest
to our groups and included those ranked 1st to
119th by CaMP scores. Colorectal cancers,
rather than breast tumors, were chosen because
more purified tumor tissues of this type were
available. Twenty-five of the 40 genes (62%)
were found to be mutated in at least one of the
96 cancers and, as predicted from our data and
simulations, most were mutated in 5% or less of
the cancers (table S5). The remaining 15 CAN-
genes were not mutated in any of the additional
96 cancers studied, but this finding is still
compatible with these genes being mutated in
a low but significant fraction of tumors; the
evaluation of more colorectal tumors than the
131 included in our study would be necessary to
exclude this possibility.

Additional analyses of mutated genes. Mu-
tation frequency is not the only type of infor-
mation that can help determine whether a
mutated gene is worthy of further evaluation.
The analyses of the predicted effects on protein
function can add independent evidence helpful
for prioritization of specific genes and muta-
tions for future research. For example, mutations
producing stop codons, out-of-frame insertions
or deletions, or splice site abnormalities are very
likely to interfere with the normal function of
the gene product (tables S3 and S4). To evaluate
missense changes, we used two sequence-based
methods for evaluating the probability that a
specific alteration would have a deleterious ef-
fect on protein function: Sorting Intolerant from
Tolerant (SIFT) and LogR.E-values based on
Pfam domains (7). These probabilities are listed
for each evaluable mutation identified in our
study in table S3. For each CAN-gene, the num-
ber of missense mutations that were predicted
to disrupt function in a statistically significant
manner is included in table S4.

Table 1. Summary of somatic mutations. UTR, untranslated region. ND, not determined because synonymous mutations were not evaluated in the
RefSeq genes analyzed in (5).

Coding changes Noncoding
changes Total

mutations
Tumor type Screen Gene set Mutated

genes Missense Nonsense Insertion Deletion Duplication Synonymous Splice site
or UTR

Colorectal
cancers

Discovery
This study 325 237 14 0 8 0 93 12 364
All RefSeq 848 722 48 4 27 18 ND 30 942

Validation
This study 88 81 9 1 2 2 30 6 131
All RefSeq 183 197 34 4 14 5 ND 15 299

Breast
cancers

Discovery This study 460 304 26 2 28 1 131 14 506
All RefSeq 1137 909 64 5 78 3 ND 53 1243

Validation
This study 62 52 3 0 3 0 19 2 79
All RefSeq 167 153 11 2 15 2 ND 7 209
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Predictions about the functional effects of
mutations can also be made at the structural
level. We generated structural models for 622 of
the RefSeq gene mutations from x-ray crystal-
lography or nuclear magnetic resonance spec-
troscopy of their encoded or related proteins
(12, 13). Some of the models were intriguing
in that they showed clustering of mutations
around active sites of proteins or near an interface
residue (examples in Fig. 1). We also used LS-
SNP software (14) to predict the likelihood that
each mutation would destabilize the protein,
interfere with the formation of a domain-domain
interface, or have an effect on protein-ligand
binding (table S3, summarized for CAN-genes
in table S4).

Finally, we identified a number of mutations
that occurred at locations identical to those of
genes involved in hereditary human diseases or
that clustered at adjacent locations in the cancers
analyzed. Such alterations are likely to have func-
tional effects on these proteins. These included
the R360W mutation (substitution of arginine
360 with tryptophan) in the RET tyrosine kinase,
corresponding to an identical loss-of-function
germline change in Hirschsprung disease (15).
Likewise, the R1624W mutation in the PKHD1
gene in colorectal cancer is identical to that ob-
served in polycystic kidney disease, a syndrome
that has neoplastic features (16). The T745M
mutation (substitution of threonine 745 with

methionine) in the cell adhesion gene CRB1 gene
is identical to one that has been shown to be a
cause of retinitis pigmentosa (17). In addition to
these examples, we identified 126 mutations in
39 proteins that occurred within a distance of 10
amino acids from one another. In particular, mu-
tations in at least two independent tumors oc-
curred in the DTNB, EDD1, GNAS, and TGM3
genes at exactly the same residue, implicating that
region as vital to the protein’s potential tumori-
genic function.

Analysis of mutated pathways. It is becom-
ing increasingly clear that pathways rather than
individual genes govern the course of tumori-
genesis (1). Mutations in any of several genes of
a single pathway can thereby cause equivalent
increases in net cell proliferation. Accordingly,
we devised a method to determine whether the
genes within specific pathways were mutated
more often than predicted by chance. The re-
sultant “pathway CaMP” score incorporated the
total number of mutations from all genes within
each group, the number of different genes mu-
tated, the combined sizes of the genes in each
group, and the total number of tumors examined
(table S6) (7).

Using this metric, we analyzed a highly cu-
rated database (Metacore, GeneGo, Inc.) that
includes human protein-protein interactions,
signal transduction and metabolic pathways,
and a variety of cellular functions and processes.

By including the number of mutated genes in
addition to the total number of mutations as
parameters, we excluded pathways that simply
contained one gene that was mutated at high
frequency (e.g., pathways containing only TP53
mutations). There were 108 pathways that were
found to be preferentially mutated in breast
tumors. Many of the pathways involved
phosphatidylinositol 3-kinase (PI3K) signaling
(Fig. 2 and table S6B). Mutations in PIK3CA
are frequent in multiple tumor types, includ-
ing breast cancers (18–21). In this study, we
identified mutations not only in PIK3CA, but
also previously unreported mutations in GAB1,
IKBKB, IRS4, NFKB1, NFKBIA, NFKBIE,
PIK3R1, PIK3R4, and RPS6KA3, implicating
both the PI3K pathway in general and nuclear
factor kB (NF-kB) signaling in particular in
breast tumorigenesis. Within the 38 colorectal
cancer pathways that appeared to be mutated in
a statistically significant manner, there were also
many that centered on PI3K (table S6A). The
pathway components mutated in colorectal
cancers differed from those in breast, with
mutations found in IRS2, IRS4, PIK3R5, PRKCZ,
PTEN, RHEB, and RPS6KB1 in addition to
PIK3CA. Additional pathways altered in colorec-
tal cancer were related to cell adhesion, the
cytoskeleton, and the extracellular matrix (table
S6A), supporting the idea that interactions
between the cancer cell and the extracellular
environment are important steps in the neoplastic
process.

Finally, there were nine examples of mutated
genes whose protein products were predicted to
interact with other mutated genes more often
than predicted by chance. The average number
of mutant gene products with which these nine
mutant genes interacted was 25 (table S6). These
results illustrate the potential utility of pathway-
based analyses and highlight a variety of different
gene groups and pathways that can help focus
further investigations on these tumor types.

The genomic landscapes of colorectal and
breast cancers. The colorectal and breast can-
cers analyzed in the Discovery Screen contained
a median of 76 and 84 nonsilent mutations in
RefSeq genes, respectively (table S2). The num-
ber of mutations per tumor was similar among
colorectal tumors (ranging from 49 to 111) but
was more variable in breast cancers (varying
from 38 to 193). The number of mutated CAN-
genes per tumor averaged 15 and 14 in co-
lorectal and breast cancers, respectively.

The “landscapes” of typical colorectal and
breast cancer genomes are depicted in Fig. 3. In
these landscapes, every RefSeq gene is repre-
sented by a point on a two-dimensional map
corresponding to its chromosomal position, and
all mutated genes in that tumor are indicated by
a dot. The relief feature of the map is provided
by the CAN-genes with the 60 highest CaMP
scores (table S4). Just as topographical maps
contain geological features of varying elevations,
the cancer genome landscape consists of relief

Fig. 1. Clustering of somatic
mutations in protein struc-
tures. Individual somatic mu-
tations were mapped onto
structural homology models
on the basis of known crystal
structure information. Homol-
ogy models were built with
MODPIPE (33) and graphics
were created with UCSF Chi-
mera software (34). Yellow
spheres indicate mutated res-
idues. (A) Two somatic muta-
tions in the glycosylation
enzyme GALNT5 occur in
residues on different sides of
the enzyme active site. Stick
models indicate enzyme sub-
strates. (B) Three somatic
mutations in the transgluta-
minase TGM3 located at
nearby surface regions of the
protein (two mutations are
present at the same residue
on the right-hand side).
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features (mutated genes) with heterogeneous
heights (determined by CaMP scores). There
are a few “mountains” representing individual
CAN-genes mutated at high frequency. However,
the landscapes contain a much larger number of
“hills” representing the CAN-genes that are
mutated at relatively low frequency. It is notable
that this general genomic landscape (few gene
mountains and many gene hills) is a common
feature of both breast and colorectal tumors.

Discussion. The results reported here add to
those published previously (5) in several important
ways. First, we report the sequences of an
additional 5168 genes in 22 tumors. These new
data provide a much more complete picture of the
cancer genome, allowing us to formulate land-
scapes of breast and colorectal tumors (Fig. 3). We
predict that the key features of this landscape—a
few gene mountains interspersed with many
gene hills—will prove to be a general feature of
most solid tumors. Second, we present data on
noncoding and synonymous mutations in addi-
tion to nonsynonymous mutations. As well as
providing information useful for estimating the
passenger rate, the data in table S2 show that
passenger rates vary considerably from tumor to
tumor, undoubtedly determined by their intrinsic

mutability and the number of generations and
bottlenecks through which they have evolved.
Third, we present more sophisticated methods
for identifying and classifying genes with more
mutations than predicted by the passenger rate
(table S4). Fourth, we present a variety of tools
based on gene products’ sequence and structure,
as well as their inclusion in certain pathways,
that can help identify mutated genes that are
most deserving of further attention (Figs. 1 and
2 and tables S3, S4, and S6). These tools can be
used to prioritize the research that follows
cancer genome-sequencing efforts.

In terms of such research, it is important to
note that sequence data can inform other, inde-
pendent approaches to the study of cancer genes.
For example, chromodomain helicase DNA bind-
ing domain 5 (CHD5) was recently proposed to
be a tumor suppressor on the basis of its func-
tional properties and copy-number alterations
(22). We identified somatic mutations in this gene
in breast tumors; the combined data strongly
support a role for this gene in tumorigenesis.
Similarly, the NF-kB pathway member IKBKE
was recently suggested to be a breast cancer
oncogene on the basis of functional and expres-
sion studies (23). We found somatic mutations

in several additional components of this signal-
ing pathway (Fig. 2), reinforcing its importance
in breast cancers. The transglutaminase (TGM)
enzymes have recently been implicated in in-
vasion and metastasis (24), and we identified
multiple somatic mutations in TGM3 in colorectal
cancers (Fig. 1). Additionally, a high-throughput
retroviral insertional mutagenesis screen in mouse
mammary tumor virus (MMTV)-induced mam-
mary tumors in mice identified 33 common
insertion sites as potential oncogenes (25); we
found 7 of these 33 genes to be mutated in breast
cancers. Given the entirely independent nature
of these screens (insertional mutagenesis in mouse
versus mutational analysis of human genes), the
overlap of these results is remarkable.

Historically, the focus of cancer research has
been on gene mountains, in part because they
were the only alterations identifiable with
available technologies. The ability to analyze
the sequence of virtually all protein-encoding
genes in cancers has shown that the vast majority
of mutations in cancers, including those that are
most likely to be drivers, do not occur in such
mountains and emphasize the heterogeneity and
complexity of human neoplasia. This new view
of cancer is consistent with the idea that a large
number of mutations, each associated with a
small fitness advantage, drive tumor progression
(26). But is it possible to make sense out of this
complexity? When all the mutations that occur
in different tumors are summed, the number of
potential driver genes is large. But this is likely
to actually reflect changes in a much more lim-
ited number of pathways, numbering no more
than 20 (1). This interpretation is consistent with
virtually all screens in model organisms, which
have generally shown that the same phenotype
can arise from alterations in any of several
genes. Other recent studies lend support to this
interpretation. For example, sequencing studies
of the kinome in large numbers of tumors have
shown that specific kinases are sometimes
mutated in a small fraction of tumors of a given
type (4, 10, 27–29). We cannot be certain that
the bulk of the low-frequency mutations ob-
served in our study are not passengers. However,
in the kinome studies, the position of mutations
within the activation loop and the demonstrated
effects of the target residues on kinase function
unambiguously implicate many of these rare
mutations as drivers. Similarly, recent analyses
of myelomas suggest that there are multiple
genes, each mutated in a small proportion of
tumors, that can alter the same signal transduction
pathway (30, 31). Furthermore, some of the low-
frequency mutations observed in our study, such
as activating mutations in the guanine nucleotide
binding protein GNAS and a homozygous non-
sense mutation in BRCA1-associated protein
(BAP1), are likely to be functional (table S3).
These examples, in addition to those in table S6,
bolster the argument that infrequent mutations can
be drivers and that they function through path-
ways that are already known.

Fig. 2. PI3K pathway mutations in breast and colorectal cancers. The identities and relationships of
genes that function in PI3K signaling are indicated. Circled genes have somatic mutations in colorectal
(red) and breast (blue) cancers. The number of tumors with somatic mutations in each mutated protein
is indicated by the number adjacent to the circle. Asterisks indicate proteins with mutated isoforms
that may play similar roles in the cell. These include insulin receptor substrates IRS2 and IRS4;
phosphatidylinositol 3-kinase regulatory subunits PIK3R1, PIK3R4, and PIK3R5; and NF-kB regulators
NFKB1, NFKBIA, and NFKBIE.

16 NOVEMBER 2007 VOL 318 SCIENCE www.sciencemag.org1112

RESEARCH ARTICLES

 o
n 

Ja
nu

ar
y 

15
, 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

http://science.sciencemag.org/


Regardless of whether this pathway-centric
interpretation is correct, it is clear that the “easy”
part of future cancer genome research will be
the identification of genetic alterations. The vast
majority of subtle mutations in individual pa-
tient’s tumors can now be identified with exist-
ing technology (Fig. 3), making personal cancer
genomics a reality. Though understanding the
precise role of these genetic alterations in
tumorigenesis will be more challenging, oppor-
tunities for exploiting such personal genomic
data on cancers are already apparent. For ex-
ample, many of the genes altered in breast can-
cers appear to affect the NF-kB pathway (table
S6), suggesting that drugs targeting this pathway
could be efficacious in breast cancers with such
mutations (30, 31). Furthermore, our data indi-
cate that individual breast and colorectal cancers
each contain ~80 amino acid–altering mutations
that are absent in all normal cells, providing a
wealth of opportunities for personalized immuno-
therapy. Finally, any mutation identified in an
individual cancer, whether driver or passenger,
can be used as an exquisitely specific biomarker to
guide patient management (32).
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Fig. 3. Cancer genome
landscapes. Nonsilent so-
matic mutations are plotted
in two-dimensional space
representing chromosomal
positions of RefSeq genes.
The telomere of the short
arm of chromosome 1 is
represented in the rear left
corner of the green plane
andascending chromosomal
positions continue in the
direction of the arrow. Chro-
mosomal positions that fol-
low the front edge of the
plane are continued at the back edge of the plane of the adjacent row, and
chromosomes are appended end to end. Peaks indicate the 60 highest-ranking
CAN-genes for each tumor type, with peak heights reflecting CaMP scores (7). The
dots represent genes that were somatically mutated in the individual colorectal
(Mx38) (A) or breast tumor (B3C) (B) displayed. The dots corresponding to

mutated genes that coincided with hills or mountains are black with white
rims; the remaining dots are white with red rims. The mountain on the right of
both landscapes represents TP53 (chromosome 17), and the other mountain
shared by both breast and colorectal cancers is PIK3CA (upper left,
chromosome 3).
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