COVER
The universe is filled with filamentary structures of dark and visible matter that make up the "cosmic web," as suggested in this artist's rendering of cosmic bubbles and connected clumps. A special section beginning on page 46 considers the latest research into the origins and evolution of the cosmic web.

Image: Shigemi Numazawa/Atlas Photo Bank/Photo Researchers Inc.

DEPARTMENTS
10 Science Online
11 This Week in Science
13 Editors’ Choice
14 Contact Science
15 Random Samples
17 NewsMakers
107 New Products
108 Science Careers

EDITORIAL
12 Science and God in the Election by Donald Kennedy
>> Special News Focus section p. 22

SPECIAL SECTION
Cosmic Web

INTRODUCTION
Warp and Woof 46

NEWS
Untangling the Celestial Strings 47

PERSPECTIVES
The Cosmic Web in Our Own Backyard 50
R. A. Ibata and G. F. Lewis
Numerical Simulations Unravel the Cosmic Web 52
C.-A. Faucher-Giguère, A. Lidz, L. Hernquist
Missing Baryons and the Warm-Hot Intergalactic Medium 55
F. Nicastro, S. Mathur, M. Elvis

NEWS OF THE WEEK
Promising Year Ends Badly After Fiscal Showdown 18
Squeezes Science
The Elusive ALS Genes 20
Saturn’s Rings Look Ancient Again 21

SCIENCESCOPE 21

NEWS FOCUS
U.S. Presidential Candidates
Science and the Next U.S. President 22
Hillary Clinton
John Edwards
Rudy Giuliani
Mike Huckabee
John McCain
Barack Obama
Bill Richardson
Mitt Romney
Fred Thompson
BIOPHYSICS

Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy
B. Huang, W. Wang, M. Bates, X. Zhuang
Three-dimensional fluorescence images of cellular structures in fixed cells are realized at 20- to 30-nm lateral and 50-nm axial resolution, without scanning.
10.1126/science.1153529

BIOCHEMISTRY

Direct Observation of Hierarchical Folding in Single Riboswitch Aptamers
W. J. Greenleaf et al.
Optical trapping reveals that activation by adenine stabilizes the weakest helix in a riboswitch, after which secondary and tertiary structures are formed sequentially.
10.1126/science.1151298

GENETICS

Mutations in the Pericentrin (PCNT) Gene Cause Primordial Dwarfism
A. Rauch et al.
In humans, an inherited condition with small brain size and near-normal intelligence is caused by mutations that disrupt chromosome separation during cell division.
10.1126/science.1151174

CLIMATE CHANGE

The Spatial Pattern and Mechanisms of Heat Content Change in the North Atlantic
M. S. Lozier et al.
Warming and cooling in different parts of the North Atlantic since 1950 reflect variable atmospheric circulation, complicating our understanding of anthropogenic changes.
10.1126/science.1146436

LETTERS

In Search of Peer Reviewers
W. F. Perrin
32

A Peer Review How-To
R. S. Zucker
34

Climate Change Goals: Where to Begin?
B. D. Goldstein
37

Response
C. Challen
38

Beyond Bad Nets
T. F. McCutchan
40

BOOKS ET AL.

The Jewel House
Elizabethan London and the Scientific Revolution
D. E. Harkness, reviewed by N. S. Popper
34

Echo Objects
The Cognitive Work of Images
B. M. Stafford, reviewed by C. A. Jones
35

POLICY FORUM

Revolutionizing China’s Environmental Protection
J. Liu and J. Diamond
37

PERSPECTIVES

Rules of Plasticity
M. Brecht and D. Schmitz
39

Beyond Born-Oppenheimer
J. M. Bowman
40

A Phase Transition Hidden in Higher Dimensions
P. Coppens
41

Functionally Degenerate—Y Not So?
W. R. Rice and U. Friberg
42

How Green Are Biofuels?
J. P. W. Scharlemann and W. F. Laurance
43

Retrospective: Seymour Benzer (1921–2007)
Y.-N. Jan and L. Jan
45

TECHNICAL COMMENT ABSTRACTS

PALEONTOLOGY
Comment on “Protein Sequences from Mastodon and *Tyrannosaurus rex* Revealed by Mass Spectrometry”
J. M. Asara and M. H. Schweitzer
33

Response to Comment on “Protein Sequences from Mastodon and *Tyrannosaurus rex* Revealed by Mass Spectrometry”
J. M. Asara and M. H. Schweitzer
33

BREVIA

EVOLUTION
Rarity of Males in Pea Aphids Results in Mutational Decay
J. A. Brisson and S. V. Nuzhdin
58

Genes used preferentially by female pea aphids are under stronger selection than those used by males, probably because females mainly reproduce asexually.

EVOLUTION
Physiological Sex Predicts Hybrid Sterility
J. H. Malone and P. Michalak
59

An apparent violation of Haldane’s rule (in hybrid organisms the heterogametic sex tends to be sterile) in frogs can be explained by postulating that males have evolved faster.

RESEARCH ARTICLES

PALEOClimATE
Reduced North Atlantic Deep Water Coeval with the Glacial Lake Agassiz Freshwater Outburst
H. F. Kleiven et al.
60

Data on deep water formation in the North Atlantic indicate that the sudden draining of a huge glacial lake south of Hudson Bay led to dramatic cooling 8200 years ago.

GENETICS
The *Physcomitrella* Genome Reveals Evolutionary Insights into the Conquest of Land by Plants
S. A. Rensing et al.
64

Comparison of the moss genome sequence with those of other plants reveals hallmarks of colonization of land, including genes to manage terrestrial stresses such as dehydration.
REPORTS

CHEMISTRY
Hidden Degrees of Freedom in Aperiodic Materials
B. Toudic et al.
Neutron diffraction shows how a host-guest crystal can undergo a phase transition that affects only higher-dimensional parameters that relate two simple sublattices. >> Perspective p. 41

CHEMISTRY
Nonadiabatic Interactions in the \(\text{CI} + \text{H}_2 \) Reaction Probed by \(\text{ClH}_2^+ \) and \(\text{CI}D \) Photoelectron Imaging
E. Garand et al.
Comparison of high-resolution spectra with theoretical simulations reveals that electronically excited ions subtly participate in an elementary reaction. >> Perspective p. 40

GEOCHEMISTRY
Helium and Neon Abundances and Compositions in Cometary Matter
B. Marty et al.
The amount and isotopic composition of helium and neon in Stardust samples imply that comet Wild 2 acquired these gases in a high-energy environment near the young Sun.

PLANETARY SCIENCE
Temperature and Composition of Saturn’s Polar Hot Spots and Hexagon
L. N. Fletcher et al.
Cassini observations show that Saturn’s atmosphere has stable, unusually hot vortices around both poles, even though its north pole is shrouded in darkness.

PALEONTOLOGY
The Avalon Explosion: Evolution of Ediacara Morphospace
B. Shen, L. Dong, S. Xiao, M. Kowalewski
Earth’s first complex life 575 million years ago rapidly encompassed the full range of ediacara morphologies before declining, a pattern like that in the later Cambrian explosion.

GEOPHYSICS
Intermittent Plate Tectonics?
P. G. Silver and M. D. Behn
Subduction may have stopped at times in Earth’s past as supercontinents formed, thus slowing the planet’s heat loss.

EVOLUTION
Polymorphic Y Chromosomes Harbor Cryptic Variation with Manifold Functional Consequences
B. Lemos, L. O. Araripe, D. L. Hartl
Unexpectedly, the Y chromosome exerts strong regulatory effects on X-linked and autosomal genes in Drosophila. >> Perspective p. 42

MOLECULAR BIOLOGY
Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres
H. D. Folco, A. L. Pidoux, T. Urano, R. C. Allshire
Formation of the centromere, the specialized region by which chromosomes are pulled apart during cell division, requires the presence of RNAi-induced heterochromatin.

CELL BIOLOGY
Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast
D. Vavylonis et al.
The contractile ring of cell division is powered by myosin motors on the cell equator, which capture and pull actin filaments growing randomly from the equator. >> Perspective p. 39

NEUROSCIENCE
Ongoing in Vivo Experience Triggers Synaptic Metaplasticity in the Neocortex
R. L. Clem, T. Celikel, A. L. Barth
During continuous sensory stimulation, NMDA receptors in the mouse cortex switch from enhancing synaptic potentiation to opposing it.

NEUROSCIENCE
Small Circuits for Large Tasks: High-Speed Decision-Making in Archerfish
T. Schlegel and S. Schuster
Archerfish shoot their insect prey with a stream of water and then use sensory information and just a few neurons to calculate how to retrieve their food.
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/319/5859

Permissions Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl