CONTENTS

SCIENCE EXPRESS

www.sciencexpress.org

BIOPHYSICS

Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy

B. Huang, W. Wang, M. Bates, X. Zhuang

Three-dimensional fluorescence images of cellular structures in fixed cells are realized at 20- to 30-nm lateral and 50-nm axial resolution, without scanning.

10.1126/science.1153529

BIOCHEMISTRY

Direct Observation of Hierarchical Folding in Single Riboswitch Aptamers

W. J. Greenleaf et al.

Optical trapping reveals that activation by adenine stabilizes the weakest helix in a riboswitch, after which secondary and tertiary structures are formed sequentially.

10.1126/science.1151298

GENETICS

Mutations in the Pericentrin (PCNT) Gene Cause Primordial Dwarfism

A. Rauch et al.

In humans, an inherited condition with small brain size and near-normal intelligence is caused by mutations that disrupt chromosome separation during cell division.

10.1126/science.1151174

CLIMATE CHANGE

The Spatial Pattern and Mechanisms of Heat Content Change in the North Atlantic

M. S. Lozier et al.

Warming and cooling in different parts of the North Atlantic since 1950 reflect variable atmospheric circulation, complicating our understanding of anthropogenic changes.

10.1126/science.1146436

LETTERS

In Search of Peer Reviewers

W. F. Perrin

32

A Peer Review How-To

R. S. Zucker

33

Climate Change Goals: Where to Begin?

B. D. Goldstein

Response

C. Challen

Beyond Bad Nets

T. F. McCutchan

34

BOOKS ET AL.

The Jewel House

Elizabethan London and the Scientific Revolution

D. E. Harkness, reviewed by N. S. Popper

35

The Cognitive Work of Images

B. M. Stafford, reviewed by C. A. Jones

34

POLICY FORUM

Revolutionizing China’s Environmental Protection

J. Liu and J. Diamond

37

PERSPECTIVES

Rules of Plasticity

M. Brecht and D. Schmitz

39

Beyond Born-Oppenheimer

J. M. Bowman

40

A Phase Transition Hidden in Higher Dimensions

P. Coppens

41

Functionally Degenerate—Y Not So?

W. R. Rice and U. Friberg

42

How Green Are Biofuels?

J. P. W. Scharlemann and W. F. Laurance

43

Retrospective: Seymour Benzer (1921–2007)

Y.-N. Jan and L. Jan

45

TECHNICAL COMMENT ABSTRACTS

PALEONTOLOGY

Comment on “Protein Sequences from Mastodon and Tyrannosaurus rex Revealed by Mass Spectrometry”

M. Buckley et al.

full text at www.sciencemag.org/cgi/content/full/319/5859/33c

Response to Comment on “Protein Sequences from Mastodon and Tyrannosaurus rex Revealed by Mass Spectrometry”

J. M. Asara and M. H. Schweitzer

full text at www.sciencemag.org/cgi/content/full/319/5859/33d

BREVIA

EVOLUTION

Rarity of Males in Pea Aphids Results in Mutational Decay

J. A. Brisson and S. V. Nuzhdin

58

Genes used preferentially by female pea aphids are under stronger selection than those used by males, probably because females mainly reproduce asexually.

EVOLUTION

Physiological Sex Predicts Hybrid Sterility

J. H. Malone and P. Michalak

59

Regardless of Genotype

J. H. Malone and P. Michalak

An apparent violation of Haldane’s rule (in hybrid organisms the heterogametic sex tends to be sterile) in frogs can be explained by postulating that males have evolved faster.

RESEARCH ARTICLES

PALEOCLIMATE

Reduced North Atlantic Deep Water Coeval with the Glacial Lake Agassiz Freshwater Outburst

H. F. Kleiven et al.

Data on deep water formation in the North Atlantic indicate that the sudden draining of a huge glacial lake south of Hudson Bay led to dramatic cooling 8200 years ago.

GENETICS

The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants

S. A. Rensing et al.

Comparison of the moss genome sequence with those of other plants reveals hallmarks of colonization of land, including genes to manage terrestrial stresses such as dehydration.

CONTENTS continued >>
that shows signs of ongoing coevolution. Because they are coated with a specific chemical, the larvae of a butterfly are adopted and cared for by an ant species, a relationship that relates two simple sublattices. **CHEMISTRY**

Nonadiabatic Interactions in the Cl + H Reaction Probed by C2H+ and CID+ Photoelectron Imaging E. Garand et al. Comparison of high-resolution spectra with theoretical simulations reveals that electronically excited ions subtly participate in an elementary reaction. **CHEMISTRY**

Helium and Neon Abundances and Compositions in Cometary Matter B. Marty et al. The amount and isotopic composition of helium and neon in Stardust samples imply that comet Wild 2 acquired these gases in a high-energy environment near the young Sun. **PLANETARY SCIENCE**

Temperature and Composition of Saturn’s Polar Hot Spots and Hexagon L. N. Fletcher et al. Cassini observations show that Saturn’s atmosphere has stable, unusually hot vortices around both poles, even though its north pole is shrouded in darkness. **PALEONTOLOGY**

The Avalon Explosion: Evolution of Ediacara Morphospace B. Shen, L. Dong, S. Xiao, M. Kowalewski Earth’s first complex life 575 million years ago rapidly encompassed the full range of ediacara morphologies before declining, a pattern like that in the later Cambrian explosion. **EVOlUTION**

Polymorphic Y Chromosomes Harbor Cryptic Variation with Manifold Functional Consequences B. Lemos, L. O. Araripe, D. L. Hartl Unexpectedly, the Y chromosome exerts strong regulatory effects on X-linked and autosomal genes in Drosophila. **MOLECULAR BIOLOGY**

Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres H. D. Folco, A. L. Pidoux, T. Urano, R. C. Allshire Formation of the centromere, the specialized region by which chromosomes are pulled apart during cell division, requires the presence of RNAi-induced heterochromatin. **CELL BIOLOGY**

Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast D. Vavylonis et al. The contractile ring of cell division is powered by myosin motors on the cell equator, which capture and pull actin filaments growing randomly from the equator. **NEUROSCIENCE**

Small Circuits for Large Tasks: High-Speed Decision-Making in Archerfish T. Schlegel and S. Schuster Archerfish shoot their insect prey with a stream of water and then use sensory information and just a few neurons to calculate how to retrieve their food.
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/319/5859

Permissions Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl