The new 685nm & 785nm lasers afford all the advantages of near-infrared imaging

STARION is the ultimate multi-purpose image scanner. Covering Fluorescent, Radioisotopic, Chemiluminescent and Digitized images with enhanced modality to meet your life science needs.

Near-IR Fluor Western Blotting

Fluorescence detection of AlexaFluor® 640 Western blotting
Sample: BSA
FLA-9000
Ex: 685nm
Filter: SFPR700, PMT:1000V, Pixel size: 100µm

Fluorescence detection of AlexaFluor® 750 Western blotting
Sample: BSA
FLA-9000
Ex: 785nm
Filter: SFPR800, PMT:1000V, Pixel size: 100µm

STARION Part11 Software

ImageReader and MultiGauge software can now be upgraded to support compliance with 21 CFR Part 11 workflow in routine laboratory practice to help ensure data integrity and security.

STARION Setting Example

<table>
<thead>
<tr>
<th>Mode</th>
<th>IP Model</th>
<th>RGB Model</th>
<th>IR + IP Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Radioisotope, Fluorescence, Digitized</td>
<td>NIR Fluorescence, Radioisotope</td>
</tr>
<tr>
<td>Excitation wavelength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>635</td>
<td>473, 532, 635</td>
<td>635, 685, 785</td>
</tr>
<tr>
<td>Filter</td>
<td>IP</td>
<td>LPB, LPG, IP</td>
<td>IP, SFPR700, SFPR800</td>
</tr>
<tr>
<td>Photomultiplier</td>
<td>PMT1</td>
<td>PMT1</td>
<td>PMT1, PMT2</td>
</tr>
<tr>
<td>Accessories</td>
<td>IP Eraser</td>
<td>IP Eraser</td>
<td>IP Eraser</td>
</tr>
</tbody>
</table>

Notice: With regard to patents owned by third parties related to, among other things, sample preparation, we recommend that you consult with a lawyer or patent attorney about obtaining a license from the third parties.

http://lifescience.fujifilm.com [Download Brochures and Application notes in PDF form]
What if staying up to date with the latest technology published in journals and patents were as easy as pushing a button?

It is.

With the “Keep Me Posted” alerting feature, SciFinder sends you automatic updates on areas you—and your competitors—are interested in.

You can monitor specific research topics, companies, authors, substances, or sequences, and choose how frequently you receive notifications: daily, monthly, or weekly.

The service isn’t just convenient, it’s incredibly current. Journal article records often appear in SciFinder before they’re even in print. New references, substances, and sequences are added daily. Patents from all the major offices are added within two days of issuance.

As with all SciFinder features, Keep Me Posted is integrated with your workflow. At any point in a search (including the beginning), simply click on the Keep Me Posted button. SciFinder tracks your steps and will generate the appropriate alert—even for complex topics. When you receive a notification, you can follow each reference as you would in a search: find citing or cited articles (with links to the electronic full text), and follow referenced substances and reactions for further information.

Comprehensive, intuitive, seamless—SciFinder doesn’t just alert you, it’s part of the process. To find out more, call us at 800-753-4227 (North America) or 614-447-3700 (worldwide) or visit www.cas.org.
Proven technology for rapid vaccine production.

Pandemics can occur at any time, and the key to successful vaccine processing is to be prepared for unexpected challenges. GE Healthcare’s comprehensive vaccine solution platform gives you the power to do more in less time, enabling scalable processes and ensuring security of supply should demand suddenly change. It includes our ground-breaking ReadyToProcess™ disposable products, which eliminate cleaning and validation to significantly reduce process development time.

Through flexible solutions backed by our expert support and worldwide presence we’re helping you transform healthcare. We call it BioProcess Re-imagined.

www.gelifesciences.com/bioprocess
Protein sample and assay technologies by QIAGEN

Simplify complexity

Rely on QIAGEN protein sample and assay technologies for:

- Expression and cloning
- Expression-ready vectors for all human genes
- Protein fractionation and purification
- Protein assays
- Protein crystallization
- Mass spec sample preparation

Contact QIAGEN today or visit www.qiagen.com/goto/Protein.
New in PNAS...

Science Sessions: PNAS Podcasts
Stimulating conversations with cutting-edge researchers, Academy members, and policy makers.

Feature Articles
Innovative work of exceptional significance.

Online Letters to the Editor
Brief comments that contribute to the discussion of PNAS research articles.

Sustainability Science
A section devoted to the interactions between natural and social systems and how those interactions affect the challenge of sustainability.

In addition to these new features, PNAS continues to bring you cutting-edge research articles, insightful commentaries, compelling profiles, in-depth perspectives, topical special features, thoughtful reviews, and much more.
Get the latest news and research from *Science* as soon as it is published. Sign up for our e-alert services and you can know when the latest issue of *Science* or *Science* Express has been posted, peruse the latest table of contents for *Science* or *Science Signaling*, and read summaries of the journal’s research, news content, or Editors’ Choice column, all from your e-mail inbox. To start receiving e-mail updates, go to:

scientemag.org/ema
Career Focus on Europe

FOCUS ON EUROPE: RESEARCH BY THE NUMBERS?

European research institutions seek to annually fund scientists as well as their research teams. By 2014-16

In 2014, the European Union (EU) alone spent €77 billion on research. This amount is about 2.8% of the EU's GDP. The number of researchers in the EU is estimated to be around 3 million.

Europe is a major player in research and development, and it is a leading region in terms of both funding and the number of researchers. The EU is home to some of the world's most prestigious research institutions, such as CERN, the European Organization for Nuclear Research, which is based in Geneva, Switzerland.

In Europe, the research community is highly international, with researchers coming from all over the world. This diversity is a key factor in the region's success in research and development.

The European Union has several programs that support research and innovation, such as Horizon 2020, which is the latest framework program for research and innovation in the EU. Horizon 2020 aims to make Europe a global leader in research and innovation by 2020.

This feature, focused on research trends and career opportunities in Europe, covers:

• State of funding and research across Europe including the success of the ERC and the FP7
• Special focus on Italy, Spain, Germany, and the UK
• What you should know if you're considering a career in research in Europe

Originally published in the July 11 issue of Science. You can download this article for free at ScienceCareers.org/europe.

The online version of this feature is supported by Bristol University.

Science Careers
From the journal Science
240,000,000 tags and counting.

Only the SOLiD™ System delivers on the promise of next generation genomics — today. With a unique two flow cell configuration and demonstrated scalability, 240M tags are just the beginning. The system’s superior flexibility supports studies ranging from whole transcriptome analysis to small RNA discovery — the SOLID Generation delivers.

For SOLID PROOF, visit solid.appliedbiosystems.com

The SOLID™ System demonstrates reproducibility of 99.6% and a dynamic range of six logs.
From the publishers of *Science, Science Signaling*, formerly known as *Science’s STKE*, will add original research starting September 2008. Each week the journal will publish leading-edge findings in addition to the current features, including Perspectives, Reviews, Protocols, Meeting Reports, Book Reviews, Teaching Resources, and the Database of Cell Signaling.

Science Signaling showcases high-impact research in cellular regulation in such fields as molecular biology, development, immunology, neuroscience, microbiology, physiology and medicine, pharmacology, biochemistry, cell biology, bioinformatics, and systems biology. Submit your research that provides new concepts and new understanding of biological signal transduction for consideration.

Subscribing to *Science Signaling* ensures that you and your lab have the latest cell signaling resources. From basic science to design of therapeutics, from molecules to networks and systems design, read the best source – *Science Signaling*.

Submit your paper to: stke.sciencemag.org/about/help/research.dtl

Announcing Chief Scientific Editor for *Science Signaling* –
Michael B. Yaffe, M.D., Ph.D.
Associate Professor, Department of Biology
Massachusetts Institute of Technology
The pages of this journal are made of recycled fiber.

The staff of *Science* is doing its share to reduce, reuse, and recycle. The paper used in printing the pages of this journal contains reused materials. The additional wood used to create this paper comes from a paper mill participating in the PEFC Council (Programme for the Endorsement of Forest Certification) — ensuring the paper is made from a sustainable managed forest. And in the future *Science* and AAAS will look to do more to advance science and conserve the environment.
Fashion Breakthrough of the Year

Our Science Gene Sequence T-shirt—get yours today!

By popular demand! Created to celebrate our Breakthrough of the Year for 2007, this T-shirt is designed from an annotated gene sequence map of human chromosome 1.

Since the shirt appeared on the cover of Science, we've been flooded with requests.

Now it's yours for just $22.50 plus tax (where applicable), and shipping & handling. Photos of the actual shirt are available at the website below.

Visit www.aaas.org/go/geneshirt to order.

Sample Safe

The REMP Sample Safe™ is a compact, scalable, fully automated and easy to use storage solution that operates at temperatures down to –80°C. It is supporting all SBS standard produced MTPs and DWPs. Combined with the unique, patented REMP Tube Technology™, it minimizes the degradation of valuable samples caused by freeze/thaw cycles significantly and helps to obtain highly reproducible data sets for your research. The REMP Sample Safe™ is designed to fit any lab and is able to grow with your storage needs.

www.remp.com
Bad Gel Day? Need a Solution?

For every 2-D gel problem, Bio-Rad has a solution.

If you run 2-D gels, chances are that you’ve experienced a bad gel day and wished you had a solution. With over 30 years of experience in electrophoresis, Bio-Rad offers expert technical advice, online support, and a comprehensive product line to help you get the best out of your 2-D gels.

- Choose from a full line of products — from sample preparation to spot excision
- Troubleshoot 2-D gels with our web-based 2-D Doctor™
- View “how-to” videos to refine your 2-D techniques using Bio-Rad products
- Access tips and techniques for sample preparation and 2-D gel electrophoresis

For all of your 2-D solutions, visit www.expressionproteomics.com
STRUCTURAL PROTEOMICS:
THE RELENTLESS PURSUIT OF PROTEIN SHAPE

In an editorial in the *Journal of Proteome Research*, structural biologist Raymond Stevens and proteomist John Yates lament the confusion of terms surrounding their work. “Structural Genomics,” they say, is restricted mostly to the United States. Europe and other countries use “Structural Proteomics” to acknowledge a broader functional perspective to their work. Whatever you call it, structural ‘omics efforts have had an indelible impact, and not just on structure databases. Their technological output has altered the way structural biology specifically—and protein chemistry in general—is done.

By Jeffrey M. Perkel

To gauge the technological impact of structural proteomics efforts, take a look at the Protein Structure Initiative (PSI) Structural Genomics Knowledge Base (SG-KB) Technology Portal (cci.lbl.gov/kb-tech). Listed are more than 100 different innovations, from reagents and robotics to informatics and data management solutions—everything needed to take the traditionally laborious process of structural biology, whether using X-ray crystallography or nuclear magnetic resonance (NMR), and make it fast, efficient, and high throughput.

“In terms of technology, there are, for the first time, a whole group of very talented people coming together to optimize structure-determination pipelines as part of their goal,” says SG-KB director Helen Berman, Board of Governors Professor of Chemistry and Chemical Biology at Rutgers University.

Take the work of just one so-called PSI phase 2 (PSI-2) specialized center, the Center for High-Throughput Structural Biology (CHTSB). (PSI is a 10-year, NIH-funded effort to determine the structure of all protein folds. Phase 2 comprises four large-scale structure-determination factories and six specialized centers dedicated to more vexing problems like membrane proteins, mammalian proteins, and protein-protein complexes.)

CHTSB includes researchers at six institutes in New York, California, and Canada. Their overall focus, says co-investigator Michael Malkowski, senior research scientist at the Hauptman-Woodward Medical Research Institute (HWI) in Buffalo, New York, is “technology development with respect to sample preparation from protein production through the diffraction experiment.”

These teams are attacking that pipeline at multiple points: coexpressing and crystallizing protein-protein complexes; preparing membrane proteins in yeast; developing crystallization additives; cryoprotecting crystals against intense X-ray beams; growing crystals inside capillaries to ease manipulation; and developing tools for crystallization screening, optimization, and image analysis.

“Each is a piece of a puzzle,” says Malkowski, “and when you put them together you form an automated system that identifies initial crystallization leads, optimizes them, grows production-sized crystals in a capillary, freezes them, mounts them, and collects data.” He adds, “We don’t have that yet, but that’s what we are building toward.”

Putting Technologies through Their Paces
Structural genomics marries the high-throughput sensibilities of genomics with the more contemplative process of structural biology. Structural proteomics, depending on whom you ask, is either the same process, or an offshoot that focuses on function. The PSI has largely fixated on maximizing “fold space” coverage without regard to biological significance. International efforts have eschewed that approach, elevating biology over coverage. Whatever the focus, structural biology pipelines initially constricted every step of the process.

“We needed better strategies at all steps—cloning, expression, purification, crystallization, and structure determination,” says Aled Edwards, director of the Structural Genomics Consortium (SGC), an international effort with labs in Canada, the UK, and Sweden. “Every process needed improvement.”

Because each protein is “idiiosyncratic,” Edwards says, what works for one may not work for another. Simply relying on anecdotal advice from the biologist down the

High-field NMR systems at the National Magnetic Resonance Facility

In an editorial in the *Journal of Proteome Research*, structural biologist Raymond Stevens and proteomist John Yates lament the confusion of terms surrounding their work. “Structural Genomics,” they say, is restricted mostly to the United States. Europe and other countries use “Structural Proteomics” to acknowledge a broader functional perspective to their work. Whatever you call it, structural ‘omics efforts have had an indelible impact, and not just on structure databases. Their technological output has altered the way structural biology specifically—and protein chemistry in general—is done.

By Jeffrey M. Perkel

To gauge the technological impact of structural proteomics efforts, take a look at the Protein Structure Initiative (PSI) Structural Genomics Knowledge Base (SG-KB) Technology Portal (cci.lbl.gov/kb-tech). Listed are more than 100 different innovations, from reagents and robotics to informatics and data management solutions—everything needed to take the traditionally laborious process of structural biology, whether using X-ray crystallography or nuclear magnetic resonance (NMR), and make it fast, efficient, and high throughput.

“In terms of technology, there are, for the first time, a whole group of very talented people coming together to optimize structure-determination pipelines as part of their goal,” says SG-KB director Helen Berman, Board of Governors Professor of Chemistry and Chemical Biology at Rutgers University.

Take the work of just one so-called PSI phase 2 (PSI-2) specialized center, the Center for High-Throughput Structural Biology (CHTSB). (PSI is a 10-year, NIH-funded effort to determine the structure of all protein folds. Phase 2 comprises four large-scale structure-determination factories and six specialized centers dedicated to more vexing problems like membrane proteins, mammalian proteins, and protein-protein complexes.)

CHTSB includes researchers at six institutes in New York, California, and Canada. Their overall focus, says co-investigator Michael Malkowski, senior research scientist at the Hauptman-Woodward Medical Research Institute (HWI) in Buffalo, New York, is “technology development with respect to sample preparation from protein production through the diffraction experiment.”

These teams are attacking that pipeline at multiple points: coexpressing and crystallizing protein-protein complexes; preparing membrane proteins in yeast; developing crystallization additives; cryoprotecting crystals against intense X-ray beams; growing crystals inside capillaries to ease manipulation; and developing tools for crystallization screening, optimization, and image analysis.

“Each is a piece of a puzzle,” says Malkowski, “and when you put them together you form an automated system that identifies initial crystallization leads, optimizes them, grows production-sized crystals in a capillary, freezes them, mounts them, and collects data.” He adds, “We don’t have that yet, but that’s what we are building toward.”

Putting Technologies through Their Paces
Structural genomics marries the high-throughput sensibilities of genomics with the more contemplative process of structural biology. Structural proteomics, depending on whom you ask, is either the same process, or an offshoot that focuses on function. The PSI has largely fixated on maximizing “fold space” coverage without regard to biological significance. International efforts have eschewed that approach, elevating biology over coverage. Whatever the focus, structural biology pipelines initially constricted every step of the process.

“We needed better strategies at all steps—cloning, expression, purification, crystallization, and structure determination,” says Aled Edwards, director of the Structural Genomics Consortium (SGC), an international effort with labs in Canada, the UK, and Sweden. “Every process needed improvement.”

Because each protein is “idiiosyncratic,” Edwards says, what works for one may not work for another. Simply relying on anecdotal advice from the biologist down the
Proteomics

“It would take a long time to put just one sample in front of the beam. If you can put the samples into a container and have a robot that can do that for you, you can speed it up and have less error.”

hall is unlikely to work. “There are thousands of new technologies,” adds Edwards. “Most will be doorstops in five years. But of all these many, many, many technologies, which are actually useful?”

The solution, he says, is to put these technologies through their paces in a controlled fashion. “That’s what the field is doing,” he says, “looking at the panoply of technologies, seeing which work, so you don’t end up chasing your tail.” Importantly, the community archives that knowledge in searchable public databases like TargetDB and PepcDB, which track not only what works, but also what doesn’t.

Earlier this year members of the SGC (including Edwards) and 13 other structural genomics facilities around the world published their collective wisdom in a paper entitled “Protein production and purification” (Nat Methods, 5:147-53, 2008). Andrzej Joachimiak, director of the Midwest Center for Structural Genomics (MCSG), calls the paper “a Maniatis manual for protein purification.” Edwards, who was corresponding author, says the report represents “the final UN-negotiated solution,” a probability-based consensus protocol for all protein jocks, not just structural biologists.

From Bad Media, a Breakthrough

The protocol contains such suggestions as developing multiple distinct constructs for each target; using ligation-independent cloning (commercialized as Clontech’s In-Fusion 2.0 PCR Cloning kits); and the unified use of expression tags for easy purification with robots such as GE Healthcare’s AKTA-express.

Another tip: try F. William Studier’s autoinduction media (available from EMD Biosciences as Novagen Overnight Express.). “It is a technique everyone should be using,” says Edwards.

Recombinant protein expression in bacteria is commonly controlled via the lactose control circuit. Place a lac operator in front of a gene of interest, and the gene will remain silent until you add the allolactose analog, IPTG. But IPTG must be added at just the right moment, and different cultures grow at different rates. “How do you get all the cultures growing at the same rate and at the same time to get optimal expression of these proteins in parallel?” asks Studier, of the Brookhaven National Laboratory.

In trying to solve that problem, Studier observed that some of his cultures induced on their own, without IPTG. He discovered that one of his media components was contaminated with trace lactose. Making use of this observation, Studier first designed a rich formulation in which cultures could grow to high optical density (OD) but never induce (noninducing medium). He then developed a precise blend of glucose, lactose, and glycerol in which the cells autoinduce upon hitting log phase. And they would do so while crankout protein at higher levels than usual, because the cells can grow to much greater densities—up to OD 20, compared to OD 3 in Luria broth. “So all you have to do is grow 96 cultures in noninducing medium, then inoculate those into autoinducing medium, grow overnight, and collect induced cultures in the morning,” he says.

Biophysical Considerations

It’s not enough to express a protein; it also must be soluble, and properly folded. At the Joint Center for Structural Genomics (JCSG) researchers employ a battery of methods to ensure desirable biophysical properties are met, says director Ian Wilson. Size-exclusion chromatography indicates whether the protein is soluble or aggregating. SDS-PAGE reveals protein purity. And deuterium-exchange mass spectrometry highlights disordered regions that could cause trouble downstream. “You label for a few seconds with deuterium, quench at low pH, digest with protease, and look for which regions are disordered by how much it is exchanging with the deuterium in the solution,” Wilson explains. “Only the disordered regions incorporate deuterium, because it is so fast.”

Such data can be invaluable. Brian Koblik of Stanford University, who solved the structure of the beta-2 adrenergic receptor, found (via separate methods) that a loop between transmembrane domains 5 and 6 was “floppy,” inhibiting crystallization. His team overcame that via parallel approaches, one involving an antibody against the C-termini of these two helices, and the other, with Ray Stevens of the Scripps Research Institute, replacing that loop with a stable T4 lysozyme domain.

Others optimize structural work by tweaking protein length or surface chemistry. Researchers at the European Molecular Biology Laboratory (EMBL) outstation in Grenoble, France, site of the European Synchrotron Radiation Facility (ESRF), use a biotinylatable tag in their library construction and screening procedures to find soluble domains, says facility director Stephen Cusack.

Researchers at the MCSG, JCSG, and SGC improve crystal formation using reductive methylation and limited proteolysis. The former alters protein surface chemistry to allow different crystal packing and improve diffraction properties, while the latter removes disordered regions in situ. Both have been tested on large numbers of proteins, says Joachimiak—400 in the case of reductive methylation, yielding 30 structures that were otherwise unattainable.

Accelerating NMR

Structure determination by NMR has also benefited from ‘omics efforts. HIFI-NMR, a “reduced dimensionality” approach developed at the PSI-2 Center for Eukaryotic Structural Genomics (CESG), reduces the time required to acquire spectral assignment data by a factor of 10, says principal investigator John Markley of the University of Wisconsin, Madison. Instead of blindly collecting data by standard methods, this approach leverages prior information at each step to get the job done in the most efficient manner.

Using NMR chemical shift data from the Northeast Structural Genomics Consortium, Yang Shen and Ad Bax from the National Institutes of Health, with Oliver Lange and David Baker at the University of Washington, validated a novel computational method (CS-ROSETTA) that predicts protein structure from chemical shift data. Their new approach thereby eliminates the need for both side-chain assignments and one of NMR’s lengthiest steps, nuclear Overhauser effect experiments.

“There are algorithms available to predict chemical shifts from structure,” says Markley. “[Bax] is using [CS-ROSETTA] to go the other way—from the chemical shifts you get a starting approximation of what the 3D conformation of the protein is.” Then, using Baker’s ROSETTA energetics algorithm, the software computes a likely final structure. In March, Bax and Baker applied CS-ROSETTA to 25 protein sequences; they estimated it can cut the structure-generation time by 50 percent.

Robotics

As with any ‘omics enterprise, automation and robotics are integral to structural proteomics. HWI researchers have developed robotics...
to automate crystallization trials. “We can do 1,536 conditions in about 20 minutes in a single plate,” Malkowski says. “And then we image these samples every week for a month.”

Such automation means researchers can do more with less, and more accurately. “When I was a postdoc, I would set up crystallization droplets of 20 to 30 µl. Now we use 200 to 500 nl,” says Joachimiak.

Crystallization robots are available from Rigaku and Fluidigm, among others. Joachimiak uses TTP LabTech’s mosquito. So does Joel Sussman, director of the Israel Structural Proteomics Center and coeditor of Structural Proteomics and Its Impact on the Life Sciences (World Scientific, 2008). In fact Sussman’s lab is extensively automated, with robots for cloning, protein purification, and crystal visualization. At ESRF, where Sussman’s team runs diffraction experiments, robots even mount their crystals into the beamline.

According to Paul Adams, head of the Berkeley Center for Structural Biology, automouting robots are especially useful for screening to see which crystals diffract best. Traditionally, “It would take a long time to put just one sample in front of the beam,” he says. “If you can put the samples into a container and have a robot that can do that for you, you can speed it up and have less error.”

Eukaryotic Troubles

Structural genomics centers have deposited over 6,600 structures in PDB. Yet challenges remain. Of 25,662 targets selected at the JCGS, 20,865 have been cloned, 20,546 expressed, 1,337 crystallized, and 686 solved—a 3.3 percent success rate. The New York SGX Research Center for Structural Genomics puts up comparable numbers: 486 structures from 8,849 selected targets (5.5 percent).

Eukaryotic proteins represent a particular challenge. For a variety of reasons, including posttranslational modifications, size, and domain structure, eukaryotic proteins are tougher nuts to crack than prokaryotic ones. As of June 1, 2008, the 10 PSI-2 centers have solved 1,716 protein structures, but just 197 of those are eukaryotic; the rest are either prokaryotic (1,500) or viral (19).

“Quite often proteins require glycosylation to be made properly,” says Ray Owens, director of the Oxford Protein Production Facility (OPPF), Oxford, UK. “So you cannot make them in E. coli. They need to be made in eukaryotic cells, which will authentically glycosylate them.” OPPF researchers use transient transfection of human embryonic kidney (HEK293) cells. Because most glycoproteins are secreted, purification is a snap: just collect the supernatant. The problem, Owens says, is “the chemical heterogeneity of the glycoproteins.” To skirt that issue team members use inhibitors like kifunensine to freeze glycoprotein sugar chains in a more homogeneous form, and endoglycosidases to pare these glycans back.

CESG researchers use a cell-free eukaryotic wheat germ extract from CellFree Sciences for their protein expression. “We find that we get roughly twice the number of successful targets produced by wheat germ extract than with E. coli,” says Markley. It is also faster, less expensive, and involves easier protein purification, because sufficient protein for a structure determination is isolated from milliliter reactions, rather than in liter quantities of cells.

Membrane Proteins

Membrane proteins also present unique structural challenges, says Scripps’ Stevens. First, because the membrane represents such a small fraction of total cellular volume, they are present at relatively low levels. More important, the membrane itself is integral to their structure. “We have to solubilize them, which puts them in a very unstable state,” he says.

Yet detergent interferes with the protein packing that is essential to crystallization. Stevens has developed or implemented several techniques to work with membrane proteins, including a high throughput “lipidic cubic phase” crystallization process first developed by Martin Caffrey of the University of Limerick, Ireland, that was key to solving the beta-2 adrenergic receptor structure.

Researchers at the New York Consortium on Membrane Protein Structure (NYCOMPS), a PSI-2 specialized center, have alternative methods, says director Wayne Hendrickson of Columbia University. “We have developed a pipeline process analogous to the kind that has been effective at large-scale centers for soluble proteins to produce membrane proteins and analyze them by crystallography and NMR,” he says.

For instance, the consortium uses ultraviolet absorbance and light scattering to test which detergents work best and which proteins are in the proper oligomeric forms. More recently, they developed a generic antibody-based approach to extensively incorporate selenomethionine residues into protein complexes, key to solving X-ray diffraction “phase problems.”

Using tools such as these, NYCOMPS researchers have produced over three thousand membrane proteins in the past year, resulting in five structures, with another seven or eight “in determination.”

“The membrane is something that is problematic,” Hendrickson says. “And despite the thousands of structures pouring out of high throughput labs around the world, so, it is safe to say, is structural proteomics in general.”

Jeffrey Perkel is a freelance writer based in Pocatello, Idaho.

DOI: 10.1126/science.opms.p0800027
New Products

Protein Detection System
The new SNAP i.d. protein detection system allows researchers to produce high-quality protein immunoblots 80 percent faster than with conventional immunodetection protocols. By shortening the time required for blocking, washing, and antibody incubations to 30 minutes, the SNAP i.d. system allows researchers to optimize their immunodetection conditions for high-quality results. The system is compatible with all membrane types and detection methods, such as chemiluminescence and fluorescence. Both sensitivity and specificity are equivalent to or higher than standard immunodetection. The system features a unique, vacuum-driven technology and built-in flow distributor to actively drive reagents through the membrane, ensuring even distribution. Three different sizes of blot holders accommodate up to three blots each, and two blot holders can be run in parallel. Thus researchers can process up to six blots in parallel.

Automated Hybridization Stations
The HS 4800 Pro and HS 400 Pro Hybridization Stations perform automated, reproducible microarray processing on single- and multisegment slides. The stations provide liquid agitation during hybridization, which increases sensitivity, stringency, and uniformity, and enables reduction of hybridization times. The stations minimize the risk of hybridization artifacts and interslide segment carry-over. They offer single-chamber, dual-chamber, and QuadChamber options that are easily interchangeable. A unique Active Bubble Suppression system avoids bubble artifacts. On-slide nitrogen drying avoids external drying steps and drying artifacts.

Tecan
For information +41-44-922-81-11
www.tecan.com

Protein Interaction Analysis
The Biacore T100 protein characterization software version 2 for the Biacore T100 label-free protein interaction analysis system enables calibration-free concentration analysis of proteins. The software makes it possible to measure protein concentration without using a standard. It also includes key functionality for protein characterization that reduces time spent on development of kinetic analysis assays through the single-cycle kinetics function. Single-cycle kinetics enables the analysis of molecular interactions that have previously been difficult to determine. In addition, the software significantly improves data evaluation so that multiple samples can be analyzed together with a few clicks. Determination of the target-binding drug fraction is important during the development of therapeutic proteins and provides an informative characterization profile in quality control of biotherapeutics.

GE Healthcare
For information 732-457-8149
www.biocore.com

Custom Peptide Synthesis
Activotec can supply high-quality, difficult-to-synthesize peptides at competitive prices. Synthetic peptides have a variety of uses, including structure-function analysis of sites within a protein, binding assays, receptor agonists/antagonists, and immunogens for the production of antisera. Using solid-phase and solution-phase chemistries as well as Fmoc and t-Boc methodologies, Activotec can produce peptides with difficult-to-synthesize sequences, cyclic peptides, hydrophobic peptides, very long-chain peptides, and nonnatural modifications. Using proprietary manual techniques and its own state-of-the-art automated synthesis equipment, Activotec can provide peptides in quantities ranging from milligrams to grams at all purity levels. Every peptide is delivered with individual mass spectroscopic and analytical high-performance liquid chromatography data.

Activotec
For information +44-1223-260008
www.activotec.com

Nickel Magnetic Beads
A powerful separation matrix, PureProteome Nickel Magnetic Beads allow fast, easy purification of polyhistidine-tagged recombinant proteins, a critical step in protein research. Millipore’s patented process for magnetizing porous silica particles provides researchers with high-binding-capacity, high-affinity beads for efficient protein purification. These beads bind recombinant protein even in the presence of EDTA, a metal ion chelator. Compared with other magnetic beads, these beads offer higher purity while yielding comparable amounts of protein, according to the manufacturer.

Millipore
For information 800-548-7853
www.millipore.com

Antibody Purification Products
Two new products, affinity matrices for the purification of IgA and IgM, have been added to the CaptureSelect Antibody Toolbox. CaptureSelect Human IgA matrix contains an affinity ligand that binds to a unique domain that is present on all classes of human IgA, with no cross-reactivity with IgM or IgG. The CaptureSelect IgM affinity matrix contains an affinity ligand that is directed toward a unique domain present on both human and mouse IgM antibodies and is free of cross-reactivity with human or mouse IgA or IgM. The products in the CaptureSelect Antibody Toolbox streamline purification of antibodies by offering standardized protocols that enable researchers to follow a simple one-step process with no need for method testing or lengthy optimization steps.

BAC BV, the BioAffinity Company
For information +31-(0)-1260-296-506
www.captureselect.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
The Perfect Real Time series introduces a new addition, the SYBR® Premix Ex Taq™ reagent for Real Time PCR. This reagent has improved reaction specificity and performance and is compatible with a variety of different Real Time machines. The SYBR® Premix Ex Taq™ effectively limits primer dimerization and non-specific amplification and accurately measures a wide range of concentrations from very small amounts of template. SYBR® Premix Ex Taq™, the latest PCR premix from Takara, is unsurpassed for high-speed, high-specificity application results.

Higher Specificity: No more non-specific amplification from primer dimers, even when starting with a minute amount of template.

Wide Range of Detection: Accurate quantification over 8 log of magnitude.

Simple Protocol: Ready to use premix type. Short reaction time due to the antibody mediated hot start technology.

Fast Reaction Times: Shorter reaction times due to optimized buffer. Applicable for use with Fast PCR instruments.

Versatility: Use on any qPCR instrument.

Amplification of cDNA from the Mouse gene YWHAZ using Takara’s Thermal Cycler Dice® Real Time System®.

6.4 pg-100 ng of total RNA from mouse liver was used to transcribe cDNA for amplification. (*Not available in Europe*)
So little sample ... so much information.

Test your samples for a panel of proteins and discover a more complete picture of disease progression and drug candidate performance. The Thermo Scientific SearchLight Sample Testing Service evaluates expression of common immune proteins and specific proteins related to your disease model – all in one assay.

- CLIA-certified testing laboratory performing multiplex biomarker analysis
- Extensive menu of disease markers
- Sensitive chemiluminescent array platform enables accurate analysis of low-abundance proteins
- Custom development and array validation services

To learn more visit www.thermo.com/searchlightservice, e-mail pierce.searchlight@thermofisher.com or call 781-970-0350.

Example of a Thermo Scientific SearchLight Array Analysis Report.
Design a custom array today. View our complete menu of assays online.