Isn’t it time to change the shape of cell culture?

You asked. We angled. The new GIBCO bottle puts an end to painful pipetting, thanks to its wide mouth and angled neck. Pouring is easier, too. And when it comes to storage, GIBCO bottles fit nicely right next to each other. With labels on two sides, you can find what you need so you can get on to what you need to do. GIBCO’s got a new angle on cell culture media. Give it a try at www.invitrogen.com/gibcobottle.
Whether it’s hair color or disease susceptibility, our unique genetic makeup plays a powerful role in determining who we are and shaping our lives. Our mission is to revolutionize how the world benefits from genetic information, which will enable people to make more informed decisions about their health.

Affymetrix GeneChip® technology has been pivotal in many landmark studies, including those named “Breakthrough of the Year” by Science magazine. Our technology offers the most complete view of the whole genome—to accelerate the development of diagnostics, help tailor treatments, and ultimately cure the world’s most critical diseases. Affymetrix is committed to developing innovative products that broaden our view of the human genome.

We are passionate about creating a world where everyone benefits from understanding their own DNA.

To learn more, visit our new website at www.affymetrix.com
Do it Right the First Time
PCRs that Works!

Takara offers a wide selection of PCR enzymes for most popular applications.

- **High Fidelity PCR**

 PrimeSTAR® HS DNA Polymerase for 10X higher fidelity than *Taq* as well as extended lengths up to 20 kb.

- **Real Time PCR**

 SYBR® Premix *Ex Taq™* (Perfect Real Time) for sensitive qPCR detection using SYBR® Green I.

 SYBR® Premix *Ex Taq™* II (Perfect Real Time) for improved reaction specificity and performance.

 Premix *Ex Taq™* (Perfect Real Time) for specific qPCR using probe detection.

 All three premixes are compatible with a variety of real-time PCR instruments.

- **Multiplex PCR**

 Taq Hot Start DNA Polymerase for excellent sensitivity and reproducibility in multiplex PCR.

 LA Taq™ HS DNA Polymerase for challenging multiplex PCR.

- **High-Speed PCR**

 SpeedSTAR™ Hot Start DNA Polymerase for high speed, high sensitivity PCR.

- **Hot-Start PCR**

 Ex Taq™ HS DNA Polymerase for increased sensitivity and high yield.

 Taq HS DNA Polymerase for increased specificity and reduced background.

 LA Taq™ HS DNA Polymerase for long PCR.

- **Long PCR**

 LA Taq™ DNA Polymerase for superior amplification of long and GC-rich templates.

PrimaSTAR™, SpeedSTAR™, Takara Ex Taq™ and Takara LA Taq™ are trademarks of Takara Bio Inc. LA PCR technology is covered by U.S. Patent No. 5,436,149 issued to Takara Bio Inc. Purchase of this product includes an immunity from suit under patents specified in the product insert to use only the amount purchased for the purchaser's own internal research. No other patent rights (such as 5' Nuclease Process patent rights) are conveyed expressly, by implication, or by estoppel. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA. Takara Bio’s Hot –Start PCR related products are licensed under U.S. patent 5,338,671 and 5,587,287 and corresponding patents in other countries. SYBR® is a registered trademark Molecular Probes.
Pure excellence, pure efficiency

QIAxcel and QIAcube

Say goodbye to manual spin-column preps and gel electrophoresis!

Visit www.qiagen.com/goto/PureExcellence for more information!
It’s here. Introducing CompoZr™ ZFN technology, a breakthrough that enables simple and efficient genomic editing—exclusively from Sigma Life Science. Zinc Finger Nuclease (ZFN) technology, optimized over the years by Sangamo Biosciences, allows easy creation of novel cell lines and model organisms with precise and heritable gene additions, deletions or modifications. A proven technology with unimaginable potential. Now it’s all possible.

The future of genomic research is at your fingertips. Discover the ZFN technology at compozrzfn.com
ACROSS THE HALL OR ACROSS THE GLOBE, REFMAN KEEPS EVERYBODY ON THE SAME PAGE.

No matter where you or your colleagues are in the world, so are your references. With Reference Manager, you can collaborate with others on a network—or even the Web. Simplify your publishing with Reference Manager where you can search Internet databases, organize your references and create instant bibliographies. Plus, with newly added features you can do even more.

• Attach any file to a record and create a single Reference Manager repository
• Cite While You Write™ with a Reference Manager tab on the Word 2007 ribbon
• Use Web Publisher to collaborate with colleagues

Simplify your life and keep everybody on the same page today.
800-722-1227 • 760-438-5526 • rs.info@thomson.com
The New **Protein Ladder** from New England Biolabs

ACHIEVE ACCURACY IN YOUR PROTEIN EXPRESSION ANALYSIS

Choose the new Protein Ladder from New England Biolabs and experience a more consistent banding pattern that is ideal for accurate size determination. A mixture of our recombinant, highly purified proteins, this ladder will resolve into 12 sharp, evenly spaced bands when analyzed by SDS-PAGE. Bring precision to your protein sample analysis with the new Protein Ladder from NEB.

Advantages:
- Suitable for analysis of a wide range of proteins
- Sharp, uniform bands in the range of 10 – 250 kDa
- Convenient band spacing for accurate molecular weight determination
- Easy-to-identify reference bands
- Value pricing

Ordering information:
- **Protein Ladder (10 – 250 kDa)** .. P7703S

Other Protein Markers Available from New England Biolabs:
- **Protein Marker, Broad Range (2 – 212 kDa)** .. P7702S/L
- **Prestained Protein Marker, Broad Range (7 – 175 kDa)** P7709V/S/L
- **ColorPlus Prestained Protein Marker, Broad Range (7 – 175 kDa)** P7709V/S/L

Cost/lane (US)

<table>
<thead>
<tr>
<th></th>
<th>0.70</th>
<th>1.10</th>
<th>1.64</th>
<th>0.98</th>
<th>0.98</th>
<th>0.80</th>
<th>0.91</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other commercially available protein ladders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compare the quality, consistency and value of the NEB Protein Ladder to other commercially available protein ladders. Cost/lane is based on current catalog price and manufacturer’s recommendations for loading a mini-gel.
Obtain sequencing read lengths of 400 to 500 bases.

Generate more than 1 million sequencing reads per 10-hour instrument run.

Improve performance by using GS FLX Titanium series reagents — without instrument upgrades.

Accelerate the pace of discovery with easy-to-use analysis tools for straightforward interpretation of data and biologically meaningful results.

Performance, Results, Impact

Learn more at www.genome-sequencing.com

Example Read Length Distribution of 629,643 reads from E. coli K-12 (Genome size ~4.5 Mb) with a modal read length of 504 bases.
Unleash the Potential of Real-Time PCR

The introduction of the LightCycler® Instrument in 1998 launched a new era in real-time PCR, inspiring novel applications and discovery. The versatile LightCycler® 480 System continues this tradition, unleashing the potential of real-time PCR through expanded analysis capabilities with the power to meet evolving research demands.

- **Benefit from ready-to-use quantification assays:** Ensure optimal performance with NEW RealTime ready gene expression panels for human pathways or gene families, pre-tested on LightCycler® 480 Multiwell Plates.

- **Detect genetic variation with confidence:** Use a powerful combination of three robust and convenient analysis methods, including High Resolution Melting, to obtain comprehensive results.

- **Get the full picture out of large-scale projects:** Easily compile and visualize data from many gene expression or genotyping runs using LightCycler® 480 Multiple Plate Analysis Software.

Explore the possibilities of Real-Time PCR.
Learn more at www.lightcycler480.com
NimbleGen CGH Microarrays and Services

Catch All The Breaks

- Discover Copy Number Variants Previously Undetectable
 Detect common and rare variants genome-wide down to 5 kb in size and fine-map breakpoints at exon-level resolution using high density 2.1 M feature arrays.

- Increase Detection of Variants in Complex Regions
 Detect variants associated with pathogenic rearrangements using whole-genome and custom array designs with enhanced probe coverage in low-copy repeat regions of the genome (e.g., segmental duplications).

- Choose Whole-Genome or Custom Targeted Designs
 Catch all the breaks using whole-genome or custom targeted designs that include the most current sequence from any eukaryotic genome.

Visit us online or call:
www.nimblegen.com/cgh
(877) NimbleGen / (608) 218-7600

Multiple microarray formats available for analysis of a single sample, or multiple samples per slide.
Need to assess the novelty of substances?
SciFinder is the answer.

It includes CAS REGISTRY®, the most comprehensive substance information available, integrated with relevant journal articles and patents.

Give your research team the highest quality and most timely scientific information resource.

Make SciFinder an essential part of your research process.

For more information about SciFinder, visit www.cas.org or e-mail help@cas.org.
NEW! TaqMan® Express Plates
Liberate your research with the technology you can trust in an all-new format.

TaqMan® Express Plates combine gold-standard TaqMan® Assay technology with the ultimate in gene expression flexibility. Select from over 50,000 pre-designed assays covering five genomes, dried-down in 96-well plates—32-, 48-, and 96-configuration formats, including candidate endogenous control options. As part of the industry-leading bioinformatics pipeline, TaqMan Express Plates reduce load time and eliminate probe/primer reagent waste. Liberate your lab with the freedom of expression that only TaqMan Express Plates can deliver. Order online today and take delivery in less than two weeks†.

Discover a plate full of possibilities at info.appliedbiosystems.com/expressplates
Someday, researchers will fully unravel the genetic mysteries that define human life. When that day arrives, we hope to have played a part. To learn about scientists making significant discoveries today, visit www.promega.com/today
The new 685nm & 785nm lasers afford all the advantages of near-infrared imaging.

STARION is the ultimate multi-purpose image scanner. Covering Fluorescent, Radioisotopic, Chemiluminescent and Digitized images with enhanced modality to meet your life science needs.

Near-IR Fluor Western Blotting

Fluorescence detection of AlexaFluor® 640 Western Blotting
Sample: BSA
FLA-9000
Ex: 665nm,
Filter: BPF700,
PMT:1000V,
Pixel size: 100μm

Fluorescence detection of AlexaFluor® 750 Western blotting
Sample: BSA
FLA-9000
Ex: 785nm,
Filter: BPF800,
PMT:1000V,
Pixel size: 100μm

STARION Part11 Software

ImageReader and MultiGauge software can now be upgraded to support compliance with 21 CFR Part 11 workflow in routine laboratory practice to help ensure data integrity and security.

STARION Setting Example

<table>
<thead>
<tr>
<th>Mode</th>
<th>IP Model</th>
<th>RGB Model</th>
<th>IR + IP Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radioisotope</td>
<td>Radioisotope, Fluorescence, Digitized</td>
<td>NIR Fluorescence, Radioisotope</td>
</tr>
<tr>
<td>Excitation wavelength</td>
<td>635</td>
<td>473 632 635</td>
<td>635 688 785</td>
</tr>
<tr>
<td>Filter</td>
<td>IP</td>
<td>LPB LPG IP</td>
<td>IP BPF BPF 800</td>
</tr>
<tr>
<td>Photomultiplier</td>
<td>PMT1</td>
<td>PMT1</td>
<td>PMT1 PMT2</td>
</tr>
<tr>
<td>Accessories</td>
<td>IP Eraser</td>
<td>IP Eraser</td>
<td>IP Eraser</td>
</tr>
</tbody>
</table>

Notice: With regard to patents owned by third parties related to, among other things, sample preparation, we recommend that you consult with a lawyer or patent attorney about obtaining a license from the third parties.

http://lifescience.fujifilm.com [Download Brochures and Application notes in PDF form]

FUJIFILM Corporation 7-3, Avasaka 8-Chome Minato-ku, Tokyo 107-0052, Japan, Tel: +81-3-6271-2158, Fax: +81-3-6271-3136, E-mail: sghfo@fujifilm.co.jp
FUJIFILM Medical Systems U.S.A., Inc. 419 West Avenue Stamford, CT 06902, USA, Tel: +1-866-902-3854, Fax: +1-203-327-6485, E-mail: sales@fujifilmsciencesusa.com
FUJIFILM Europe GmbH Heesterweg 31, 49549 Dusseldorf, Germany, Tel: +49-211-5089-144, Fax: +49-211-5089-9144, E-mail: lifesciences@fujifilm.eu
FUJIFILM UK Ltd. Unit 17 St Martins Way, St Martins Business Centre, Bedford, MK42 OLJ, U.K., Tel: +44-1234-572228, Fax: +44-1234-245203, E-mail: lifesciences@fujifilm.co.uk

富士軟片(中國)投資有限公司 Rm.04-09, 11/F You You International Plaza, No.75 Fu Jian Road, Pudong New Area, Shanghai China 200121, Tel: +86-21-3678-4886 ext.363, Fax: +86-21-5873-1818, E-mail: lifesciences@fujifilm.com.cn
New in PNAS...

Science Sessions: PNAS Podcasts
Stimulating conversations with cutting-edge researchers, Academy members, and policy makers.

Feature Articles
Innovative work of exceptional significance.

Online Letters to the Editor
Brief comments that contribute to the discussion of PNAS research articles.

Sustainability Science
A section devoted to the interactions between natural and social systems and how those interactions affect the challenge of sustainability.

In addition to these new features, PNAS continues to bring you cutting-edge research articles, insightful commentaries, compelling profiles, in-depth perspectives, topical special features, thoughtful reviews, and much more.
2009 Courses

Analytical & Quantitative Light Microscopy
May 6 - May 15

Biology of the Inner Ear
August 9 - August 30

Biology of Parasitism: Modern Approaches
June 12 - August 1

BioMedical Informatics
1st Session: May 31 - June 7
2nd Session: September 20 - September 27

Embryology: Concepts & Techniques in Modern Developmental Biology
June 13 - July 26

Frontiers in Reproduction: Molecular & Cellular Concepts & Applications
May 2 - June 14

Frontiers in Stem Cells and Regeneration
October 4 - October 10

Gene Regulatory Networks for Development
October 11 - October 23

Methods in Computational Neuroscience
August 2 - August 30

Microbial Diversity
June 13 - July 30

Molecular Biology of Aging
July 26 - August 15

Molecular Mycology: Current Approaches to Fungal Pathogenesis
August 5 - August 21

Neural Systems & Behavior
June 6 - August 2

Neurobiology
June 6 - August 9

Neuroinformatics
August 15 - August 30

Optical Microscopy & Imaging in the Biomedical Sciences
October 6 - October 15

Physiology: Cell & Computational Biology
June 13 - August 2

Summer Program in Neuroscience, Ethics, & Survival (SPINES)
June 13 - July 11

Workshop on Molecular Evolution
July 26 - August 7

Zebrafish Development & Genetics
August 8 - August 22

FOR MORE INFORMATION CONTACT: Admissions Coordinator
admissions@mbl.edu; (508) 289-7401; MBL, 7 MBL Street, Woods Hole, MA 02543

www.MBL.edu/education

The MBL is an Equal Opportunity/Affirmative Action Employer.
Isaac Newton’s
Inspiration Became Legend.
What Will Inspire You?
AstraZeneca proudly announces the 24th Annual Excellence in Chemistry Award Winners

Awardees:
Professor M. Christina White
University of Illinois, Urbana-Champaign

Professor Richmond Sarpong
University of California, Berkeley

Distinguished Lecturer:
Professor Dale L. Boger
The Scripps Research Institute

At AstraZeneca, we recognize that advances in medicine rely on innovations in chemistry. To reward outstanding contributions to the art of organic chemistry, the Excellence in Chemistry Award is presented annually to two talented academic researchers who have demonstrated distinct achievements in synthetic, mechanistic, or bioorganic chemistry. The existence of this Awards Symposium, now in its 24th year, is a testament to AstraZeneca’s commitment to support high-level academic research. This support leads to discoveries that further our understanding of diseases and new therapeutic approaches that ultimately benefit patients. In selecting these awardees, our committee of scientists consult a world-leading chemist, who also serves as the distinguished lecturer.

With best wishes for continued innovation and excellence in chemical research, AstraZeneca congratulates this year’s award winners.

www.astrazeneca-us.com ©2008 AstraZeneca Pharmaceuticals LP 11/08
Q
Where can I learn how to get published in *Science*?

A
At the free workshop on “How to Get Published in *Science*” to be held at the upcoming AAAS Annual Meeting to be held 12–16 February 2009 in Chicago.

This is only one of the career development workshops that are offered for free and designed for students and professionals at all career levels. Learn how to run for your local school board or craft a one-minute talk. You might even bump into a few Nobel Laureates.

Find a full list of career development workshops online at aaas.org/meetings. Select “Program Planner.”
The journal’s mission is to facilitate communication and cooperation among basic and preclinical researchers, physician scientists, regulators, policy makers, industry, and funding agencies in order to improve health around the world. It will present original, science-based peer reviewed research that successfully moves the field closer to helping patients. Perspectives and reviews from basic and clinical viewpoints, and discussions about research funding and regulatory issues will be included.

With Science Translational Medicine, you can expect the same level of breakthrough research that is the hallmark of the journal Science. The journal will be edited by Katrina L. Kelner, Ph.D. and an international advisory group of clinician scientists and other experts. AAAS will publish an online weekly edition and a monthly print compilation.

The monthly print edition, to be published 12 times a year, will be a compilation of the weekly online edition and sold exclusively to subscribers of the online edition. More subscription details will be available as the launch date approaches. For more information contact the editor and product manager at scitranslationalmed@aaas.org.
Wrap yourself in something groundbreaking this year

Our *Science* Gene Sequence T-shirt—get yours today!

By popular demand! Created to celebrate our Breakthrough of the Year for 2007, this T-shirt is designed from an annotated gene sequence map of human chromosome 1.

Since the shirt appeared on the cover of *Science*, we’ve been flooded with requests. **Now it’s yours for just $22.50** plus tax (where applicable), and shipping & handling. Photos of the actual shirt are available at the website below.

To order: www.aaas.org/go/geneshirt
CELL SIGNALING: ChIPping Away at Gene Expression

Chromatin immunoprecipitation reveals where proteins interact with DNA, and advances in this technology—including simplified applications, improved sensitivity, and higher throughput—allow scientists to track increasingly complex details of gene regulation in normal development and disease conditions.

by Mike May

A microscopic voyage would turn truly fantastic if scientists could watch the molecular pathways that regulate gene expression. Chromatin immunoprecipitation (ChIP) brings researchers closer to that capability. “You can detect protein on DNA sites in the native chromatin context,” says Jim Bone, strategic marketing manager at Active Motif of Carlsbad, California. “It’s not like in vitro experiments with naked DNA in a reaction tube using purified protein to see if it binds.”

So researchers can use ChIP to see which proteins bind to a specific DNA site in its natural environment. Then, experimental manipulations can show how cellular conditions change the protein’s binding behavior. ChIP can also be used to study histone modifications. “These are very dynamic,” says Bone. “They change with cell type, stage of development, and different extracellular signals.”

This technology can even deliver a broad perspective. “ChIP provides the means to a global analysis of binding events that occur in the living cells, leading to better understanding of regulation of chromatin structure and gene expression,” says Marjeta Urh, leader of the protein analysis group at Promega in Madison, Wisconsin.

In typical approaches to ChIP, scientists use formaldehyde to fix cells, which keeps proteins sequestered where they were interacting with DNA. Then, enzymes snip the DNA into pieces, and antibodies are used to bind specific proteins, which remain bound to the DNA. To collect the entire complex created during a ChIP reaction, the antibody-protein-DNA is bound by beads coated with protein A or protein G. The bead makes it easier to collect the complexes from the solution. In some forms of ChIP, known as ChIP-Seq, the DNA can then be sequenced and mapped to its spot in the genome.

Although the first commercial kits for ChIP came out about a decade ago, many new ones add features to this technology. In general, new kits for ChIP work faster and with smaller samples. In the past, for example, it took several days to run a ChIP assay, but the latest kits provide results in just one day. Moreover, today’s kits can usually perform ChIP with as few as one million cells, when it used to take 10 million.

Today’s ChIP antibodies also provide more specificity. “Recently, what’s become powerful is the ability to use antibodies against specific posttranslational modification states of histones and other nuclear proteins to perform global chromatin location analysis,” says John Rosenfeld, manager of the R&D chromatin biology group at Millipore in Temecula, California. In addition, ChIP keeps getting easier to use. “ChIP is challenging,” says Sallie Cassel, director of marketing at Millipore. “It used to be the focus of only histone [continued]
“When you can reprogram a somatic cell into a cell that can generate an entire organism, that is pretty profound.”

and chromatin researchers. However, because today’s kits have so simplified the procedure, the technique has evolved into a general application.”

Building Broader ChIPs
To expand studies, tool developers are taking a broader view of chromosomes. “We’re moving toward a higher density microarray platform to accomplish this,” says Renee Zuckerman, genomics marketing manager at Agilent in Santa Clara, California. She cites growing interest in DNA methylation analysis using ChIP on a microarray platform. “As researchers seek to understand how gene regulation works on a global scale, these higher density arrays let them look at more areas of interest, and do so more cost effectively,” says Rini Saxena, senior product manager for methylation and ChIP-on-chip at Agilent. In fact, Agilent’s newest ChIP-on-chip arrays will provide one million features—up from 244,000. Saxena adds, “All of our probes are empirically validated, making them highly specific and sensitive. The result is a very high signal-to-noise level, which provides high-quality data.” This system includes Agilent’s newest DNA Microarray Scanner, which provides a resolution down to 2 microns.

Although scientists want large numbers of features on a ChIP or DNA-methylation microarray, many require custom features. “We provide web-based customization tools,” says Saxena. “When looking at regulatory networks, for instance, somebody might want to study transcription-factor networks in a specific set of chromosomes.” This researcher can turn to Agilent’s online tools to create a custom array. Agilent then prints these in just a few weeks.

To help drive advances in ChIP, companies often collaborate. As one example, Agilent and Millipore agreed to combine their microarrays and antibodies, respectively. “We found that researchers were buying these antibodies for ChIP,” says Saxena. “So now they get an end-to-end solution.”

Moreover, academic and industrial collaborations show what ChIP-on-chip can unveil. For example, Richard Young, member of the Whitehead Institute for Biomedical Research and professor of biology at the Massachusetts Institute of Technology, consults with Agilent. Young used ChIP-on-chip, with Agilent microarrays, to show that, as he explains, “most signaling pathways in Saccharomyces have terminal kinases that associate with the signaling pathway’s target genes.” In addition, Young recently used ChIP-on-chip data to design experiments that show that the Wnt signaling pathway can enhance reprogramming of somatic cells into embryonic stem cells. “When you can reprogram a somatic cell into a cell that can generate an entire organism, that is pretty profound,” Young says.

Other companies also focus on improving ChIP through specialized kits. For instance, Sigma-Aldrich in St. Louis, Missouri, developed its ChIP1 Imprint kit. “It is one of the fastest ChIP kits, running a reaction in about six to seven hours,” says Savita Bagga, product manager for epigenetics at Sigma-Aldrich. “It comes in eight-well strips, enabling high throughput screening of 96 samples simultaneously,” Bagga says. Each well should contain about 100,000 cells, but this kit can work with as few as 10,000 cells per well, according to Bagga. Moreover, the reactions run completely on the plate. “You don’t need columns except for DNA purification, and these come with the kit,” Bagga explains.

Some companies even specialize in ChIP antibodies. For example, Ricardo de Medeiros, scientist in the department of antibody applications at R&D Systems in Minneapolis, Minnesota, says, “We have kits that contain ChIP-validated antibodies plus all of the buffers necessary to perform this assay.” These kits also include positive and negative controls. So far, R&D Systems offers about 25 antibody kits for ChIP with optimized antibody-buffer combinations.

Adding Magnetism
Some vendors have modified traditional ChIP to use magnetic beads. For example, Active Motif’s Chip-IT Express HT Kit combines magnetic beads with a 96-well plate. “I’ve done hundreds of ChIP reactions,” says Bone of Active Motif, “but I could never do more than two or three dozen in a day, and those were extremely long days. Now, you can do 96 reactions at one time.” In general, says Bone, the magnetic bead approach speeds up ChIP. “You don’t need to clean samples as much,” he says, “because using these beads reduces non-specific binding of chromatin relative to agarose beads.”

Traditional ChIP was also more technically challenging, according to Bone. “You needed to be very consistent,” he says. “In pipetting by hand, for example, you had to be careful to avoid accidentally pulling up agarose beads.” He adds, “You weren’t guaranteed success your first time out.” With the magnetic bead approach, the beads are pulled to the side of the tube, allowing the liquid to be removed more cleanly and easily.

Other companies, such as Millipore, also take the magnetic bead approach. Cassel says, “Our MAGNA ChIP kits are easy to use and experiments can actually be performed in a single day, unlike the traditional ChIP methods which can often take up to three days.” And thanks to its acquisition of Upstate, Millipore now provides a wide range of antibodies that are specifically designed for use with ChIP assays.

Invitrogen in Carlsbad, California, uses its magnetic Dynabeads in ChIP applications. “We offer Dynabeads Protein A and Dynabeads Protein G,” says Amy Cuneo, product manager for epigenetics at Invitrogen. “These magnetic beads make handling easier, protocols faster, and there is less background.” Invitrogen’s wide collection of antibodies can also be used with ChIP to capture a range of transcription factors.

Invitrogen looks at ChIP as one step in bigger experiments. Kristin Wiederholt, R&D manager for epigenetics and the RNAi group at Invitrogen, says, “We have a broad portfolio of products around downstream applications that are compatible with ChIP.” As examples, she mentions qRT-PCR reagents and array-
labeling kits. In addition, Wiedeholt points out that Invitrogen’s RNAi reagents could be used to knock down specific genes and researchers can then use ChIP to see what happens to transcription factor binding at that gene location.

Covering All Angles
Like many technologies that gain popularity, ChIP entices companies to develop complete product lines that cover many experimental angles. At Illumina in San Diego, California, for example, Chris Streck, gene expression and regulation product manager, says, “We provide all the necessary reagents, consumables, and sequencing technology coupled with software analysis tools for genomewide ChIP-Seq analysis.”

ChIP-sequencing, often called ChIP-Seq, combines traditional ChIP with high throughput DNA sequencing. In ChIP-Seq, enriched DNA fragments isolated from protein-DNA complexes are sequenced and the frequency of each unique sequence is calculated. The resulting counts are aligned to the genome to identify specific DNA-binding sites. In particular, Illumina focuses on providing improved resolution for protein-binding site location in addition to decreasing input requirements to 10 nanograms of DNA for genomewide analyses.

For researchers who want to take advantage of ChIP without gearing up to run this assay themselves, Illumina and Genpathway in San Diego, California, teamed up to offer a beginning-to-end service for ChIP-Seq. A researcher provides cells or tissue and receives analyzed data in 8–10 weeks or less. This service uses Genpathway’s ChIP processes—including sample processing, antibody selection and library preparation, and quality control—and Illumina’s Genome Analyzer to sequence the resulting libraries.

Beyond wanting to know which protein binds to a specific spot on DNA, researchers might also want to know if two proteins bind to the same spot. Likewise, they may want to determine if a protein binds at a spot where there’s a specific histone modification. This can be deciphered with Active Motif’s Re-Chip-IT Kit. This process—called ChIP-ChIP—runs two sequential ChIP reactions. The first uses an antibody for one protein, and the second ChIP uses an antibody for another protein. “In other words, you start the second ChIP with the results of the first,” says Active Motif’s Bone.

Getting Away from Antibodies
Nearly all ChIP processes use antibodies to grab the protein-DNA complexes, but Promega takes a different approach with its HaloCHIP System, which uses HaloTag technology. Here a DNA-binding protein that a researcher wants to study is expressed as a HaloTag fusion protein and—as in the traditional ChIP approach—the binding of the fusion protein to DNA is preserved by cross-linking with formaldehyde. Then, the protein-DNA complexes are captured directly onto HaloLink Resin without the need for an antibody.

“This approach works faster than traditional homebrew methods,” says Paula Phenix, Promega’s global product manager in the proteomics group. Urh adds that the HaloCHIP requires fewer cells than traditional ChIP techniques. She says, “Some ChIP techniques require 10 million cells, but HaloCHIP needs a million or fewer.” In addition, if a reliable antibody does not exist for a target protein, a researcher can still study protein-DNA interactions with the HaloCHIP.

HaloCHIP System belong to a family of HaloTag applications, each allowing analysis of a different aspect of protein function. As Urh explains, “A researcher can use the same sample containing HaloTag fusion proteins not only to analyze protein-DNA interactions but also protein-protein interactions, and to observe movement of proteins within the cell. Ultimately, these data together lead to better understanding of protein function and cell physiology.

Automation Ahead
In the future, ChIP should get even simpler. “I’d like to see it automated,” says Bone. “Then, you could do true high throughput ChIP. When we get to 1,536 ChIPs in a day, that’s high throughput—provided you don’t need 50 graduate students and postdocs to accomplish it.”

Moreover, at the Whitehead Institute, Young would like to see ChIP reveal the entire population of proteins that play a role in regulating a gene. “If we can develop a method that isolates individual promotor regions and then discovers all of the factors that occur there, that would be extremely valuable,” he says. In addition, Young wants to see ChIP techniques that require fewer cells, down to hundreds or even dozens. “That would help us to explore more human disease states,” he says.

Advances in ChIP continue to bring researchers closer to observing the steps behind the signaling pathways in gene regulation. ChIP’s perspective also keeps expanding. As the technology improves, scientists will be better equipped to obtain a clearer picture of the inner working of cells in both broader perspective and finer detail.
Cell Signaling Computational Platform
Cellucidate is a new computational platform for cell signaling researchers. The Cellucidate collaborative workspace features an intuitive visual language for describing protein interactions coupled with advanced computational techniques to enable researchers to discover, model, and analyze signaling pathways and run virtual experiments. With this web-based platform, biologists can publish their work and access a repository of evolving data, knowledge, and models to facilitate collaboration and build on prior research. The dynamic webs of protein interactions involved in cell signaling processes tend to overwhelm traditional static or statistical techniques. This technology is designed to give researchers the tools to quickly and easily identify new knowledge, assess its impact on prior work, and decide whether to incorporate it into their work.

Plectix BioSystems
For information 617-591-2400
www.plectix.com

Highly Validated Antibodies
Sigma-Aldrich announced the addition of over two thousand antibodies to its line of Prestige Antibodies. These antibodies were developed by the Human Proteome Resource and are commercially available through an exclusive partnership with Sigma-Aldrich and Atlas Antibodies. Prestige Antibodies are highly validated for specificity and are designed to have low cross-reactivity to other human proteins. These reagents are available online, where customers can search or browse for available antibodies by specificgene name and ID, or by keywords.

Sigma-Aldrich
For information 800-521-8956
www.sigma.com/prestige

Universal Prokaryotic Arrays
The Universal Prokaryotic high-density oligonucleotide arrays are suitable for use in gene expression and comparative genomics research. The microarrays feature multiple arrays per slide, allowing researchers to carry out versatile, integrated experiments in more than one application area, even on the same array, which saves time and money. The Universal Prokaryotic arrays make use of long oligonucleotides that are synthesized using advanced printing technology, resulting in more consistent data. They were designed in collaboration with the prokaryotic community to be targeted to real research needs. These are available for many popular research targets, including E. coli, S. typhimurium, Streptomyces coelicolor, and Mycobacterium tuberculosis.

Oxford Gene Technology
For information +44-(0)-1234-210555
www.ogt.co.uk

Stem Cell Analysis Kits
Six new flow cytometry kits are designed to make stem cell research faster, easier, and more accurate. With these robust, three-parameter FlowCellect kits, scientists can easily assess embryonic and neural stem cell phenotypes at various stages of differentiation. Designed to eliminate the need for researchers to spend time on assay development, the kits help characterization by analyzing stem cell phenotypes and tracking the progress of differentiation along various lineages. The kits are optimized for use on the Guava EasyCyte Plus system.

Millipore
For Information 800-548-7853
www.millipore.com

Confocal Imaging System
The VT-Infinity3SL confocal imaging system integrates a single solid-state laser with VisiTech’s patented two-dimensional Array Scanning Technology. The new instrument eliminates the need for an external laser subsystem, thus reducing the system footprint to a minimum, while providing all the advantages of the VT-Infinity product family. Advantages include selectable confocal pinhole sizes, low photobleaching, and high-speed scanning (up to a thousand scans per second), making it suitable for live-cell imaging experiments. It can be expanded to incorporate additional laser lines.

VisiTech International
For information +44-(0)-191-5166255
www.visitech.co.uk

Electrophysiological Microscope
The Axio Examiner Fixed Stage Microscope for electrophysiological experiments is particularly well suited for patch clamp experiments on nerve cells, examinations of brain cells, and for measuring electrical signals on cells. With the new Zeiss LSM 710 NLO laser scanning microscope, it is integrated into a sensitive, multiphoton system. The connection of one or two AxioCam cameras and the use of the AxioVision 4.7 software with a special physiology module make the quantitative evaluation of typical experiments comfortable and convenient, including the ability to visualize infrared differential interference contrast and fluorescence in individual and merged live windows. Axio Examiner is designed so that complex experiments are easy to set up and safe to use. To configure a specific system, the user has a choice of four upper parts, two lower parts, and a large number of different components and motorization options.

Zeiss
For information 800-233-2343
www.zeiss.com/micro

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information. Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
Small molecules deliver big breakthroughs in pluripotency, self-renewal and differentiation.

Small molecules offer many advantages: Easy cell penetration. Low antigenicity. The versatility to work across multiple cell signaling pathways, and to effect epigenetic modifications as well. No animal-derived media components, potentially enabling chemically defined media formulations.

And, lately, discovery after discovery. Stemgent has precisely the small molecules you need for stem cell research, including some you won’t find anywhere else today. CHIR99021 and PD0325901 are just two examples. We work closely with leading researchers to anticipate your needs, and more exclusives are on the way now.

Interested in exploring the possibilities? Call Stemgent right away and speak with any scientist in our Small Molecules Group. We’re at speed on all the research, so we’re ready to help you plan your experiments and choose the right small molecules.

Small molecules are here. Let’s use them. For more information, visit www.stemgent.com/sci5 or call 877-228-9783 (toll-free) or +1 617-245-0098 (intl).

Opinion-leading stem cell investigators around the world have published numerous important breakthroughs with small molecules this year. The pace seems to be accelerating, and PubMed references are beginning to proliferate.

From The Scripps Research Institute, the Sheng Ding laboratory reported reprogramming neural progenitor cells from mouse somatic cells with BIX01294 and PD0325901 replacing viral transduction of certain transcription factors.1

Since 2000, Sheng Ding has pioneered the modulation of cell processes by chemical rather than biological means, enabling far superior control.

The Doug Melton laboratory at the Harvard Stem Cell Institute established that valproic acid improves reprogramming efficiency more than 100-fold.2

And Roger Pederson’s group at Cambridge showed that SB431542 inhibits Activin/Nodal signaling to promote specification of human embryonic stem cells into neuroectoderm.3

© 2008 by Stemgent, Inc. Stemgent, Reprogramming the Reagent, and the What’s Next logotype are trademarks of Stemgent, Inc.
Experience the power of dynamic, real-time, label-free cellular analysis with the xCELLigence System from Roche Applied Science. Acquire data that end-point analysis could never realize, throughout your entire experiment. Work label-free to ensure physiologically relevant data, and choose from flexible throughput options to meet your needs: 48, 96, or 576 (6 x 96) wells simultaneously.

- Capture data throughout the entire time course of your experiment
- Obtain physiologically relevant data and eliminate the need for foreign labels and reporters
- Maximize versatility: detect cells across a broad dynamic range, and perform a wide variety of applications (e.g., proliferation and cytotoxicity, Figure 1).

The xCELLigence System, providing Greater Insight for True Understanding.

For more information, visit www.xcelligence.roche.com or contact your local Roche representative today!