Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy

Christian W. Freudiger,1,2a‡ Wei Min,3,4+ Brian G. Saar,1 Sijia Lu,3 Gary R. Holton,1 Chengwei He,3 Jason C. Tsai,4 Jing X. Kang,3 X. Sunney Xie1‡

Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous techniques in that it offers background-free and readily interpretable chemical contrast. We show a variety of biomedical applications, such as differentiating distributions of various chemical bonds. However, infrared microscopy has limited spatial resolution because of long infrared wavelengths. Spontaneous Raman scattering microscopy, while having higher spatial resolution due to shorter excitation wavelengths, is insensitive and thus often has limited imaging speed. Coherent anti-Stokes Raman scattering (CARS) microscopy offers higher sensitivity than spontaneous Raman microscopy (3, 4). However, a CARS spectrum is different from its corresponding spontaneous Raman spectrum due to a nonresonant background, which complicates spectral assignment, causes difficulties in image interpretation, and limits detection sensitivity.

Here we explore stimulated Raman scattering (SRS) as an imaging contrast mechanism. SRS is analogous (5, 6) to the well-known phenomenon of stimulated emission (7) and was first observed in 1962 (8). Since then it has been used in many spectroscopic studies (9–12). In spontaneous Raman scattering, one laser beam at a frequency \(\omega_p \) illuminates the sample and the signal is generated at the Stokes and anti-Stokes frequencies, \(\omega_S \) and \(\omega_A \), respectively, due to inelastic scattering. In SRS, however, two laser beams at \(\omega_p \) and \(\omega_S \) coincide on the sample (Fig. 1A). When the difference frequency, \(\Delta \omega = \omega_p - \omega_A \), also called the Raman shift, matches a particular molecular vibrational frequency \(\Omega \), amplification of the Raman signal is achieved by virtue of stimulated excitation. Consequently, the intensity of the Stokes beam, \(I_S \), experiences a gain, \(\Delta I_S \) (stimulated Raman gain, SRG), and the intensity of the pump beam, \(I_p \), experiences a loss, \(\Delta I_p \) (stimulated Raman loss, SRL), as shown in Fig. 1B. In contrast, when \(\Delta \omega \) does not match any vibrational resonance, SRL and SRG cannot occur. Therefore, unlike CARS, SRL and SRG do not exhibit a nonresonant background (11).

The intensity of SRG or SRL is described by \(\Delta I_S \propto N \times \sigma_{\text{Raman}} |I_p|^2 I_S \) and \(\Delta I_p \propto -N \times \sigma_{\text{Raman}} |I_p|^2 I_S \), respectively.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.

\(\Delta I_p \) is the difference between the pump and the signal, while \(I_S \) and \(I_p \) are the intensities of the signal and the pump, respectively. \(\sigma_{\text{Raman}} \) is the Raman cross-section of the sample.
provided by a 1064-nm mode-locked Nd:YVO4 metric oscillator (OPO), and the Stokes beam is by a synchronously pumped, tunable optical parametric amplifier. The pump beam for SRL is provided with more than three orders of magnitude lower repetition rate (76 MHz) picosecond pulse trains limits the image acquisition speed.

We take a different approach, using high-repetition rate (76 MHz) picosecond pulse trains with more than three orders of magnitude lower peak power. The pump beam for SRL is provided by a synchronously pumped, tunable optical parametric oscillator (OPO), and the Stokes beam is provided by a 1064-nm mode-locked Nd:YVO4 laser. A 7-ps pulse width is chosen because its frequency bandwidth offers optimal spectral resolution (3 cm⁻¹). Under this excitation condition, the small SRL and SRG signals (ΔI_p/Ip and ΔI_S/I_S < 10⁻⁴) are buried in the laser noise. Realizing that laser noise occurs primarily at low frequencies, we implement a high-frequency phase-sensitive detection scheme, as previously used in other applications (10, 16, 17). For SRL, we modulate the intensity of the Stokes beam at 1.7 MHz and detect the resulting intensity modulation of the pump beam at the same frequency with a lock-in amplifier (Fig. 1C). Similarly, SRG can be measured by modulating the pump beam and detecting the Stokes beam (18). With this approach, ΔI_p/Ip < 10⁻³ can be achieved with a 1-s time constant. To acquire images via beam scanning, we used a 300-μs time constant and a pixel dwell time of 170 μs. It is difficult to incorporate such phase-sensitive detection at radio frequency (MHz) with a multiplex detector such as a diode array. Our approach can detect intensity changes ΔI_p/Ip and ΔI_S/I_S four orders of magnitude more sensitive than in the previous report (14).

Collinear pump and Stokes beams are focused with a high-numerical aperture (NA) objective (NA = 1.2) onto a common focal spot (Fig. 1D). In SRS, the spatial resolution is diffraction limited and similar to that of two-photon fluorescence. Because SRL and SRG are measured at the same frequencies as those of the input fields, phase matching is automatically fulfilled. This allows deconvolution with a point spread function similar to that of fluorescence microscopy and makes image interpretation simpler than in the case of CARS (19).

To detect the pump or Stokes beams in the forward direction, we used a condenser with an NA = 1.35, which is higher than that of the excitation objective, to minimize spurious background due to cross-phase modulation (20, 21). Alternatively, backward (epi) detection is possible in turbid samples because multiple scattering events redirect a considerable portion of the forward-propagating pump and Stokes beams to the backward direction, which can be collected with the same excitation objective lens (22). SRL or SRG spectra at a particular position in the sample can be recorded by automated OPO tuning. We detected SRL instead of SRG because the responsivity of the photodiode used is higher for the pump than for the Stokes beam.

We verified that SRL is linear in both Ip and IS (18). Unlike the CARS signal that is proportional to the square of the concentration, the linear dependence of SRL on analyte concentration (Fig. 1E) allows straightforward quantitative analysis. The detection limit is 50 μM for retinol (Fig. 1E) and 5 mM for methanol solutions (18), with average laser power < 40 mW (30 MW/cm²) for each beam. Close to the shot noise limit, this sensitivity corresponds to about 3000 retinol and 300,000 methanol molecules in focus, respectively, which has surpassed the detection limit reported for CARS microscopy (23).

We show in Fig. 1F the SRL, spontaneous Raman, and CARS spectra of an isolated Raman peak of trans-retinol (18). Whereas SRL and spontaneous Raman spectra are nearly identical, the CARS spectrum exhibits a nonresonant background independent of the Raman shift, and spectral distortion because of interference with the background (24). Good agreement between the SRL, SRG, and spontaneous Raman spectra is also seen for spectra with multiple peaks (Fig. 1G) (18, 25). Thus, SRL allows simple spectroscopic identification based on the Raman literature, particularly in the “crowded” fingerprint region.
As the first application, we monitored the uptake of omega-3 fatty acids by living human lung cancer cells through SRL imaging and microspectroscopy (Fig. 2). Polyunsaturated omega-3 fatty acids, such as eicosapentaenoic acid (EPA), provide health benefits through mechanisms such as dampening inflammation, lowering blood triacylglyceride concentrations, and inducing cancer cell apoptosis, but can only be obtained from the diet (26). As shown in Fig. 2A, unsaturated fatty acids exhibit a Raman band at 3015 cm$^{-1}$, attributable to the stretching mode of \equivC-H bond associated with C=C double bonds (27). The intensity of this 3015 cm$^{-1}$ mode is approximately proportional to the number of C=C double bonds in the lipid molecule. In contrast, the 2920 cm$^{-1}$ peak intensity is found to be similar for all saturated and unsaturated fatty acids.

When cells are grown with 25 μM EPA for 24 hours (18), lipid droplets (LDs) are visible when imaging at both 2920 cm$^{-1}$ (Fig. 2C) and 3015 cm$^{-1}$ (Fig. 2D) bands. The SRL images show a much stronger signal outside the LDs at 2920 cm$^{-1}$ than at 3015 cm$^{-1}$, indicating that most of the fatty acids outside the LDs are saturated. In the absence of EPA in the culturing media, the cells have few LDs inside the cytoplasm due to the limited lipid supply (18). We also conducted SRL microspectroscopy at specific positions inside the cell to identify the local chemical composition. The nucleus exhibits an SRL spectrum (blue in Fig. 2B) similar to that of the saturated fatty acids, with negligible contribution at 3015 cm$^{-1}$, whereas the spectrum from the LD has a pronounced 3015 cm$^{-1}$ peak (red in Fig. 2B). No sign of photodamage, such as plasma membrane blebbing (15), was observed after repeated images of the same cell. Therefore, we can use SRL spectral imaging and microspectroscopy to follow uptake of unsaturated fatty acids by living cells, opening possibilities to study lipid metabolism and its associated diseases.

Next, we present SRS tissue imaging without staining. Many stains are impossible to apply in vivo. Label-free optical techniques, such as optical coherence tomography and diffusive optical tomography, often do not offer chemical contrast, while autofluorescence is limited to a few chemical species. A strong SRL signal originates from the CH$_2$ stretching vibration (2845 cm$^{-1}$) of lipids in tissue, especially in the brain, where lipid-rich myelin sheaths surround axons, as was seen in CARS microscopy (28). Figure 3A shows forward-detected SRL images of a fiber tract in the corpus callosum of a thin slice of mouse brain. We also demonstrate epi SRL imaging from a ~1-mm-thick slice of mouse brain (Fig. 3B), which clearly reveals individual neurons.

Skin imaging is another application of SRS microscopy. Figure 3C shows three individual SRL sections of mouse skin in the same area but at different depths, all with $\Delta\omega$ tuned into 2845 cm$^{-1}$ (18). This highlights the 3D sectioning capability and subcellular resolution of SRS in tissue. At a depth of 4 μm, the SRL image shows the stratum corneum, which consists of polygonal cells and serves as the main protective layer of the body. This suggests that the intercellular space is rich in lipids. At a depth of 42 μm, lipid-rich sebaceous glands can be identified in the dermis. The nuclei of the gland cells are dark spots due to the lack of lipids. At a depth of 105 μm, the subcutaneous fat layer is clearly visible.

Figure 3D compares on and off vibrational resonance SRL and CARS images of stratum corneum. When $\Delta\omega$ is tuned from on-resonance (2845 cm$^{-1}$) to off-resonance (2780 cm$^{-1}$) of the
SRS allows label-free 3D in situ visualization of two different drug-delivery pathways into the skin.

CH₂ stretching mode, the SRL signal vanishes completely, whereas the nonresonant CARS background still exhibits contrast that complicates image interpretation. We note that tissue autofluorescence does not interfere with the SRS. The absence of the nonresonant background in SRS reflects the major advantage over CARS imaging.

We also show the use of SRS to monitor drug delivery. Fluorescent labels are usually larger than drug molecules and may perturb their transport properties. Although confocal spontaneous Raman microspectroscopy has been used to obtain longitudinal penetration profiles, the lateral distribution is often compromised due to the long pixel dwell times (29). Here we show the mapping of the distribution of two compounds: dimethyl sulfoxide (DMSO), a skin-penetration enhancer (29); and retinoic acid (RA), which is used to treat acne, wrinkles, photaging, and acute promyelocytic leukemia (30).

As a hydrophilic molecule, DMSO penetrates the skin via the protein phase, so the DMSO image in the stratum corneum (Fig. 4B) shows inverse contrast compared to the lipid image in Fig. 3C. A depth profile shows detectable DMSO over more than 60 μm (Fig. 4C), and the hydrophilic interaction with the tissue is confirmed in the subcutaneous fat layer. Simultaneous twocolor imaging tuned into lipid and DMSO (18) allows us to show that the DMSO is insoluble in the lipid structures (Fig. 4D). In contrast, RA, which is a hydrophobic molecule, penetrates via the lipid-rich intercellular space in the epidermis (Fig. 4E and F) after ultrasonication of the tissue to enhance delivery (18). These results show that SRS offers a new approach for studying pharmacokinetics in situ. As a label-free and sensitive imaging modality, SRS microscopy allows mapping of molecular species in 3D and the ability to follow their dynamics in living cells and organisms based on the wealth of Raman spectroscopy.

References and Notes
18. Methods, additional results, and movies are available as supporting material on Science Online.
21. Another spurious background signal can arise from two-color two-photon absorption of the pump and Stokes beams. See (27).
25. Subtle spectral differences between spontaneous Raman spectroscopy and SRS have been predicted theoretically. See (22).
32. We thank C. Ackermann and S. Zhang for advice on skin imaging; S. Kesari, X. Xu and the MBF Harvard Mouse Facilities for providing mouse tissue; J. Grice and M. Roberts for the loan of a sonicator; and G. Young, X. Xu, M. Rückel, and P. Sims for helpful discussions. C.W.F. and B.G.S. thank Boehringer Ingelheim Fonds for a Ph.D. Fellowship and the Army Research Office for a National Defense Science and Engineering Graduate Fellowship, respectively. J.K.K. acknowledges support from the NIH (grant CA113605).
Leukemic Cells Create Bone Marrow Niches That Disrupt the Behavior of Normal Hematopoietic Progenitor Cells

Angela Colmone, Maria Amorim, Andrea L. Pontier, Sheng Wang, Elizabeth Jablonski, Dorothy A. Sipkins*

The host tissue microenvironment influences malignant cell proliferation and metastasis, but little is known about how tumor-induced changes in the microenvironment affect benign cellular ecosystems. Applying dynamic in vivo imaging to a mouse model, we show that leukemic cell growth disrupts normal hematopoietic progenitor cell (HPC) bone marrow niches and creates abnormal microenvironments that sequester transplanted human CD34+ (HPC-enriched) cells. CD34+ cells in leukemic mice declined in number over time and failed to mobilize into the peripheral circulation in response to cytokine stimulation. Neutralization of stem cell factor (SCF) secreted by leukemic cells inhibited CD34+ cell migration into malignant niches, normalized CD34+ cell numbers, and restored CD34+ cell mobilization in leukemic mice. These data suggest that the tumor microenvironment causes HPC dysfunction by usurping normal HPC niches and that therapeutic inhibition of HPC interaction with tumor niches may help maintain normal progenitor cell function in the setting of malignancy.

Hematopoietic progenitor cells (HPCs) home to and engraft in highly specific bone marrow (BM) microenvironments, or niches, that regulate their survival, proliferation, and differentiation (1, 2). These niches have been defined by the association of particular stromal cell types and by their elaboration or secretion of specific signaling molecules, growth factors, and cytokines (3). At least two distinct HPC-supportive niches have been identified in the BM: an osteoblastic niche in which molecules including bone morphogenetic protein, osteopontin, angiopoietin-1, and Notch appear to play important regulatory roles; and a vascular niche that remains to be molecularly defined (4–8).

Fig. 1. Leukemia-induced changes in the BM microenvironment disrupt CD34+ cell homing. (A) Diagram of mouse calvarial BM vasculature. In control mice, CD34+ cells predominantly home to parasagittal sinusoidal vasculature. A major fraction of CD34+ cells engraft in this parasagittal region after homing, whereas other CD34+ cells migrate to more lateral osteoblastic and vascular niches. (B) SDF-1 (red) is highly expressed in the parasagittal sinusoidal region (CD34+ cell homing sites) of control mice. Nalm-6–GFP cells (green) preferentially home to and proliferate in this area, leading to marked down-regulation of SDF-1 expression, here shown at 35 days after Nalm-6–GFP engraftment. Central vein (cv) is labeled for orientation. (C) CD34+ cells (white) home to the SDF-1–positive parasagittal vascular niches in control mice. CD34+ cells aberrantly home to SDF-1−negative, lateral regions in tumor (green)–engrafted mice. Scale bars (B and C), 250 μm.

Although defects in hematopoiesis are frequently observed in patients with malignant involvement of the BM, the molecular bases of these phenomena, and whether they might reflect perturbations in HPC-supportive niches, are unknown. Suppression of normal hematopoiesis can occur in the setting of relatively low tumor burden and thus does not necessarily reflect anatomic “crowding out” of benign cells.

Using a severe combined immunodeficiency (SCID) mouse xenograft model of Nalm-6 pre-B acute lymphoblastic leukemia (ALL), we have shown that malignant cells metastasize to specific stromal cell–derived factor–1 (SDF-1)–positive vascular niches in the BM that overlap with peri-vascular HPC niches (9). To investigate whether benign and malignant cells compete for niche resources, we used real-time, in vivo confocal and multiphoton microscopy imaging approaches that allowed us to colocalize fluorescently labeled BM antigens with fluorescently labeled human CD34+ cells, which are highly enriched in HPCs, and fluorescent tumor cells (10). For intravenous transplant into mice, we harvested CD34+ cells from human cord blood and from the peripheral blood of human donors who had been treated...
Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy

Christian W. Freudiger, Wei Min, Brian G. Saar, Sijia Lu, Gary R. Holtom, Chengwei He, Jason C. Tsai, Jing X. Kang and X. Sunney Xie

Science 322 (5909), 1857-1861.
DOI: 10.1126/science.1165758