Representation of Geometric Borders in the Entorhinal Cortex

Trygve Solstad, Charlotte N. Boccara,* Emilio Kropff,* May-Britt Moser, Edvard I. Moser†

We report the existence of an entorhinal cell type that fires when an animal is close to the borders of the proximal environment. The orientation-specific edge-encoding activity of these "border cells" is maintained when the environment is stretched and during testing in enclosures of different size and shape in different rooms. Border cells are relatively sparse, making up less than 10% of the local cell population, but can be found in all layers of the medial entorhinal cortex as well as the adjacent parasubiculum, often intermingled with head-direction cells and grid cells. Border cells may be instrumental in planning trajectories and anchoring grid fields and place fields to a geometric reference frame.

A n animal’s current position in the environment is encoded by a network of hippocampal and parahippocampal neurons with diverse spatial firing properties. Within this network, at least three cell types contribute to the computation of self-location: place cells, which fire when the animal moves through a particular location in space (1–3); head-direction cells, which fire when the animal is facing in a certain direction (4–7); and grid cells, whose multiple sharply localized firing fields form a remarkably regular triangular pattern across the environment (3, 7–9). In addition to these cell types, computational models posit the existence of cortical “boundary vector cells,” whose activity patterns encode the animal’s distance from salient geometric borders (10, 11). Based on predictions from these models, we investigated whether proximity to borders is represented by specific cell types in the entorhinal spatial representation circuit (12).

A total of 624 principal cells were recorded from the dorsocaudal quarter of the medial entorhinal cortex (MEC) and adjacent parasubiculum in 13 rats (fig. S1). Neuronal activity was sampled while these animals foraged in enclosures with moveable walls and barriers. The animals were first tested in a square enclosure (1 m by 1 m or 1.5 m by 1.5 m) with 50-cm-high walls. Many recorded cells were grid cells and head-direction cells (7–9), but in addition the data included a previously unknown class of entorhinal cells that fired exclusively along one or several walls of the enclosure (Fig. 1 and fig. S2). These cells were identified by computing, for each cell, the difference between the maximal length of a wall touching upon a single firing field and the average distance of the fields from the nearest wall, divided by the sum of those values (12). Border scores ranged from −1 for cells with central firing fields to +1 for cells with fields that perfectly lined up along at least one entire wall. “Border cells” were defined as spatially stable cells with border scores above 0.5. A total of 69 cells from 12 animals passed this criterion (Fig. 1 and fig. S2) (13). In these cells, 86.0 ± 0.6% of the spikes occurred closer to the walls than to the center of the box per unit of time [mean ± SEM; \(t(68) = 17.4 \), one-sample t test, \(P < 0.001 \); expected value 75%]. Only 3.6 ± 1.0% of the...
central area was part of a firing field [expected value 25%; $t(68) = 22.1, P < 0.001$]. Fifty-two of the cells fired along a single wall; the remaining 17, mostly from the deep layers of the MEC, had fields along two, three, or four walls (fig. S2A). On average, the border field along the dominant wall covered $75.4 \pm 1.8\%$ of the length of the wall. The mean distance between the active bins in the field and the wall was $8.4 \pm 0.3\%$ of the box length. An additional set of fewer than 10 cells, excluded from the formal criterion, had fields that were parallel to the box walls but separated by a stripe of inactivity between the walls and the field (Fig. 1B, cells 287 and 677). The activity pattern of the border cells was fundamentally different from that of grid cells and head-direction cells recorded simultaneously on the same tetrodes [Fig. 1, C and D, and supporting online material (SOM) text]. Border cells were found in all layers of the MEC and in the adjacent parasubiculum (fig. S1 and SOM text). Thirty-one of 69 border cells were modulated by the theta rhythm (fig. S3).

If the activity was determined by the walls rather than other localized variables, the cells should continue to fire along their preferred walls after changes in the length of the box, and the mean firing distance from the nearest wall might remain unchanged. This prediction was confirmed for most of the cells that were classified as border cells in the small square enclosure. Extending the 1-m–by–1-m square to a 1-m–by–2-m or 2-m–by–1-m rectangle caused a corresponding extension of the firing field if the field was parallel to the extended wall but not if its long axis was orthogonal to the direction of extension (44 cells; Fig. 2A and fig. S4). The fraction of spikes along the walls per unit of time was not changed [79.9 \pm 1.7\% in the square and 80.8 \pm 1.5\% in the rectangles; paired t test, $t(43) = 0.45$]. The proportion of the central area covered by firing fields [5.0 \pm 1.0\% in the square and 7.9 \pm 1.5\% in the rectangle; paired t test, $t(43) = 2.3, P < 0.05$] remained far below the chance level of 25\% [for the rectangle, $t(43) = 11.8, P < 0.001$], suggesting that the firing was indeed controlled by the walls of the environment.

Do border cells primarily encode the periphery of the environment or are they tuned to barriers more generally, irrespective of their continuity with the other borders? We recorded the activity of 22 border cells after inserting a discrete wall into the square enclosure (11, 12) (Fig. 2B and figs. S5 and S6). Only cells with fields along a single wall were analyzed (12 cells). When the wall was inserted in parallel with the original firing field, an additional field emerged in the rate map of all cells, although only 9 of the new fields met our selection criteria for quantitative analysis. In all 12 cases, the new field lined up along the inserted wall. The new field and the parent field were always on the same side of the insert relative to the distal room cues (for example, both were on the east side in Fig. 2B). The new field covered $68.7 \pm 8.2\%$ of the inserted wall on this side. The coverage of the opposite side (the side that faced the parent field) was 0 in all cases. Reducing the height of the barrier from 50 cm to 5 cm did not abolish the new field as long as the animal’s trajectory was impeded (fig. S6; three experiments).

To determine whether border cells also respond to boundaries other than walls, the box walls were removed and the animals were tested on the remaining open surface, which now had a 60-cm drop on all four sides. In general, border fields could still be identified (Fig. 2C and figs. S7 and S8). The fraction of spikes along the walls per unit of time was not changed significantly [84.4 \pm 1.5\% with walls, 80.3 \pm 3.1\% without walls; $t(9) = 1.8, P > 0.10$], although the fraction of the central area that was part of a firing field increased [2.8 \pm 2.1\% with walls, 11.2 \pm 4.1\% without walls, $t(9) = 2.5, P < 0.05$; expected value 25\%, $t(9) = 3.3, P < 0.01$]. The persistence of activity along the edges suggests that the cells respond to a variety of borders.

Unlike place cells (14, 15), grid cells and head-direction cells retain their basic activity pattern across environments (5, 9, 16, 17). To determine whether border cells are similarly context-independent, we first compared the activity of 27 cells in two different rooms, using square recording boxes in each room. The fraction of spikes along the walls, normalized by dwell times, did not change between the rooms [83.0 \pm 1.5\% versus 84.7 \pm 1.3\%; paired t test, $t(26) = 1.41, P > 0.15$; Fig. 2, B and C, versus D], nor did the proportion of the central area that was part of a firing field [11.5 \pm 4.1\% versus 7.5 \pm 2.8\%; $t(26) = 0.98, P > 0.30$]. We also compared the firing patterns of 21 border cells in two differently shaped enclosures, a square and a circle,
in a single room (Fig. 2D and fig. S9). Again, the time-normalized fraction of spikes along the walls was not different [square, 87.1 ± 1.0%; circle, 85.0 ± 1.6%; paired t test, t(20) = 1.67, P > 0.10; Fig. 2D] and the firing fields covered a similar proportion of the central area of the environments [6.1 ± 2.2% and 12.7 ± 4.3; t(20) = 1.95, P > 0.05]. The persistence of border-related activity across environments, under conditions that often lead to realignment in grid cells and re-mapping in place cells (16) (fig. S8), suggests that the firing of these cells is primarily defined by geometric borders and less by the content of the environment or the training history of the animal.

Does the representation of borders, grid positions, and directions remain coherent across environments? We recorded 10 border cells along with grid cells and head-direction cells in five experiments. When the cue card on the wall of the circle was rotated 90°, simultaneously recorded border cells always rotated in concert (three experiments; pairwise difference in rotation 1°, 1°, and 9°; Fig. 3A). The same was observed with simultaneously recorded border cells and grid cells (mean difference between cell types 0°, 7.2°, and 9.5°; Fig. 3A) and with simultaneously recorded border cells and head-direction cells (mean difference 8.5°, 12.5°, and 13.6°; Fig. 3A; two of these experiments also included grid cells). When the animals were tested in different rooms, differences in the relative orientation of simultaneously recorded border cells were retained; that is, cells with fields on opposite walls in one room also fired along opposite walls in the other room, and their relation to grid cells and head-direction cells remained constant (Fig. 3B).

Taken together, these findings provide evidence for a previously unknown cell type in the spatial representation circuit of the MEC. Border cells have firing fields that line up along selected geometric borders of the proximal environment, irrespective of their length and continuity with other borders. The observation of border cells across all layers of the MEC confirms predictions from computational models that posit the existence of a boundary-responsive cortical cell population upstream of the hippocampus (10, 11, 18). Given that border cells are distributed widely in the circuit, information about obstacles and borders should be accessible to the majority of the entorhinal grid cells as well as to external target regions involved in path planning (19). By defining the perimeter of the environment, border cells may serve as reference frames for place representations within that environment, determining the firing locations of grid cells in the MEC as well as of place cells in the hippocampus and spatially selective cells in other cortical regions (20) (SOM text).

References and Notes
12. Materials and methods are available as supporting material on Science Online.
13. The proportion of border cells in the medial entorhinal cell population is overestimated because experiments were often not started on days with no known border cells in the cell sample. The estimates should be taken as an upper limit.
18. A small number of boundary-modulated cells has also been reported downstream of the hippocampus, in the subiculum (11), but whether these signals are derived from local neurons or from entorhinal axons [as in (21)] has not been established.
23. We thank N. Burgess and a number of other colleagues for helpful discussion and suggestions; M. P. Witter for advice about electrode location; M. Fyhn for donating an implanted animal; and A. M. Amundsgård, E. Sjulstad, I. M. F. Hammer, K. Haugen, K. Jenssen, R. Skjerpeng, H. Waade, and T. Åsmul for technical assistance. The work was supported by the Kavli Foundation, the Centre of Excellence scheme of the Norwegian Research Council, and a European Commission Framework 7 project (SPACEBRAIN).

Supporting Online Material
www.sciencemag.org/cgi/content/full/322/5909/1865/DC1
Materials and Methods
SOM Text
Figs. S1 to S12
References
26 September 2008; accepted 10 November 2008
10.1126/science.1166466
Representation of Geometric Borders in the Entorhinal Cortex
Trygve Solstad, Charlotte N. Boccara, Emilio Kropff, May-Britt Moser and Edvard I. Moser

Science 322 (5909), 1865-1868.
DOI: 10.1126/science.1166466

http://science.sciencemag.org/content/322/5909/1865
http://science.sciencemag.org/content/suppl/2008/12/18/322.5909.1865.DC1
http://science.sciencemag.org/content/322/5909/1865#BIBL
http://www.sciencemag.org/help/reprints-and-permissions

This article cites 17 articles, 7 of which you can access for free.

Use of this article is subject to the Terms of Service.