SPECIAL SECTION

Stem Cells

INTRODUCTION

1661 Steps to the Clinic

REVIEWS

1666 The Role of Stromal Stem Cells in Tissue Regeneration and Wound Repair
T. S. Stappenbeck and H. Miyoshi

1670 The Increasing Complexity of the Cancer Stem Cell Paradigm
J. M. Rosen and C. T. Jordan

1673 Growth Factors, Matrices, and Forces Combine and Control Stem Cells
D. E. Discher et al.

PERSPECTIVES

1662 FDA Regulation of Stem Cell–Based Products
D. W. Fink Jr.

1664 Medical Innovation Versus Stem Cell Tourism
O. Lindvall and I. Hyun

NEWS FOCUS

1634 The Brain Collector
Science Podcast

1637 Antibiotics in Nature: Beyond Biological Warfare

1640 Are We Ready for the Next Solar Maximum? No Way, Say Scientists

LETTERS

1642 The Global Alliance for Chronic Diseases
A. S. Daar and al.
Current Brazilian Law on Animal Experimentation
C. J. S. Machado et al.

1644 Creationist Beliefs in Europe
P. Clément and M.-P. Quessada

1645 Sex in Leishmania
P. Volf and J. Sadlova

BOOKS ET AL.

1646 Mothers and Others
S. B. Hrdy, reviewed by G. R. Brown

1647 Longing and Belonging
A. J. Pugh, reviewed by S. L. Hofferth

POLICY FORUM

1648 The NIH Draft Guidelines on Human Stem Cell Research
M. A. Majumder and C. B. Cohen

EDUCATION FORUM

1650 Innovating Education in Croatia
D. Primorac

PERSPECTIVES

1651 Seeing Green and Red in Diatom Genomes
T. Dagan and W. Martin

1652 Auxin at the Evo-Devo Intersection
W. E. Friedman

1654 Phase Transition in a Cell
L. Le Goff and T. Lecuit

1655 Rate Control and Reaction Engineering
J. K. Nørskov et al.

1656 Building an Open Cloud
M. R. Nelson

COVER

Colonies of human embryonic stem cells with differentiating cells at their edges, growing on mouse feeder cells. Cell nuclei are stained in blue, nuclear lamina in red, and cytoplasm in green (overlapping blue and red areas appear purple). The self-renewal capacity and pluripotency of human stem cells make them valuable for modeling human disease. These cells also display potential for transplantation medicine. See the special section beginning on page 1661.

Image: Oded Kopper and Nissim Benvenisty, The Hebrew University of Jerusalem
REVIEW
1679 Competitive Interactions Between Cells: Death, Growth, and Geography
L. A. Johnston
>> Stem Cells section p. 1661

BREVIA
1683 Elevated CO₂ Enhances Otolith Growth in Young Fish
D. M. Checkley Jr. et al.
Acidification of the oceans may have unexpected effects on the development of bony structures in fish larvae.

RESEARCH ARTICLE
1684 Auxin-Dependent Patterning and Gamete Specification in the Arabidopsis Female Gametophyte
G. C. Pagnussat et al.
An auxin gradient is involved in cell fate specification of the female sex cells in flowering plants.
>> Perspective p. 1652

REPORTS
1689 Extending Universal Nodal Excitations Optimizes Superconductivity in Bi₄Sr₂CaCu₂O₈₊δ
A. Pushp et al.
Scanning tunneling spectroscopy reveals strong electronic correlations in the insulating state of a cuprate superconductor.

1693 High-Resolution NMR in Magnetic Fields with Unknown Spatiotemporal Variations
P. Pelupessy et al.
A coherence transfer method overcomes disruptions to nuclear magnetic resonance spectra by magnetic field fluctuations.

1697 White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule
P. Mal et al.
A molecular cage keeps phosphorus from igniting in air, yet releases it easily for reactions when benzene is added.

1699 Trapping Molecules on a Chip
S. A. Meek et al.
Trapping a beam of carbon monoxide molecules onto a chip should enable fundamental studies of chemical dynamics.

1702 Amplified Trace Gas Removal in the Troposphere
A. Hofzumahaus et al.
A yet undescribed pathway for hydroxyl radical production is needed to account for reaction rates of highly polluted air.

1705 Postmating Sexual Selection Favors Males That Sire Offspring with Low Fitness
T. Bilde et al.
Multiple mating in beetles may not benefit females, as sexually antagonistic evolution may be at work.

1707 Dynamic Signaling Network for the Specification of Embryonic Pancreas and Liver Progenitors
E. Wandzioch and K. S. Zaret
During mammalian development, networks of signals coordinate cell-type programming into specific organs.
>> Stem Cells section p. 1661

1710 MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice
A. Bonauer et al.
Inhibition of a microRNA that represses blood vessel growth enhances the recovery of tissue damaged by an inadequate blood supply.

1713 Mitochondrial STAT3 Supports Ras-Dependent Oncogenic Transformation
D. J. Gough et al.
A transcription factor promotes the transformation of cells by the Ras oncogene only when present in the mitochondrion.

1716 Synthetic Heterochromatin Bypasses RNAi and Centromeric Repeats to Establish Functional Centromeres
A. Kagansky et al.
A tethered methyltransferase induces the tight-packing of DNA, the formation of a kinetochore, and chromosome segregation.

1720 Diversity and Complexity in DNA Recognition by Transcription Factors
G. Badis et al.
A broad survey of transcription factors reveals that related proteins can have multiple and differing DNA binding specificities.

1724 Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms
A. Moustafa et al.
The genomes of early plant representatives are composites, with a substantial number of foreign genes from red and green algae.
>> Perspective p. 1651

1726 Solution Nuclear Magnetic Resonance Structure of Membrane-Integral Diacylglycerol Kinase
W. D. Van Horn et al.
Mutations reveal the distribution of sequence changes that alter folding and affect function in a membrane-bound enzyme.

1729 Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation
C. P. Brangwynne et al.
Localization of RNA and protein-rich germ-cell granules occurs by controlled dissolution and condensation.
>> Perspective p. 1654

1732 Ventral Tegmental Area BDNF Induces an Opiate-Dependent–Like Reward State in Naïve Rats
H. Vargas-Perez et al.
A growth factor involved in neuronal plasticity alters neurons in a specific area of the brain after chronic exposure to opioid drugs.

CONTENTS continued >>
Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.

Mutations in Familial kinesin-like protein Costal2.

Researchers borrow forensic geographic profiling to Tracking Killers of the Sea.

Lamprey sheds one-fifth of its genome, Fish Throws Away Its Genes as It Grows.