Think Bio-Rad.

Bio-Rad is the brains behind blotting, with the experience, products, and support you need for better results for all your blotting applications. And with your continued feedback driving ongoing improvements and innovation, we like to think of you as the brains behind Bio-Rad.

With a comprehensive line of products for a complete blotting workflow we are your trusted source for quality instrumentation, reagents, and consumables. Bio-Rad is first in the world in blotting because we’ve been behind you from the beginning.

Visit www.bio-rad.com/ad/bbbglobal/ and see how Bio-Rad’s “Protein Blotting Guide” can complement and advance your research.

Research. Together.
Advances in life science technologies have enabled researchers to gain greater insight into the workings of our genetic code. This includes how subtle changes in gene sequences can impact the expression of encoded proteins through mechanisms including codon bias, mRNA stability, and translation initiation. Natural genes sequences have been shaped in response to many different evolutionary pressures, but are rarely optimal for aspects of “biotechnological fitness,” such as maximized protein yield or optimal expression control. In this webinar, our expert guests will discuss the current understanding of how and why gene coding sequences influence protein expression, and ways in which this understanding can help shape strategies to design genes for applications ranging from synthetic biology to protein crystallography.

Join our panel of experts in a live discussion. Register to participate.

Questions can be submitted live to the panel during the webinar or in advance via e-mail provided with registration. To register, visit

www.sciencemag.org/webinar

During the webinar, viewers will:
• obtain an overview of the current state of research in this field
• gain insight into the range of cellular processes affected by variations in gene sequence
• learn about the importance of optimizing gene sequences for numerous research applications
• have questions answered live by the panel of experts!

Participants:
Joshua Plotkin, Ph.D.
University of Pennsylvania
Philadelpihia, PA

Christine Vogel, Ph.D.
University of Texas at Austin
Austin, TX

Mark Welch, Ph.D.
DNA 2.0
Menlo Park, CA
Interesting what a little imagination can do

Imagination has always inspired the scientific mind. At GE Healthcare Life Sciences, the same imagination inspires us to provide the most complete range of products and solutions available. Everything from innovative research system platforms, such as ÄKTA™, Biacore™ and IN Cell Analyzer, to everyday lab essentials from our Whatman™ and Amersham™ brands, to a full range of products for bioprocessing. Scientists around the world rely on these brands to deliver reproducible results, with the highest quality, that ultimately helps improve their productivity.

At GE Healthcare Life Sciences, our focus is on helping scientists achieve even more, faster. It’s a commitment we have in our genes. And all this is backed by the service, support and investment for the future that being part of GE can bring.

Want to set your imagination free and do more? Why not talk with us today. Visit www.gelifesciences.com

| ÄKTA | Amersham | Biacore | IN Cell Analyzer | Whatman | GE Service |
Gene expression and function analysis
sample and assay technologies by QIAGEN

Enjoy first-time success

Rely on QIAGEN’s manual and automated workflow solutions for:

- Sample collection and disruption
- RNA stabilization and purification
- Real-time PCR and RT-PCR and gene expression assays
- RNAi and gene silencing
- miRNA purification and assays
- Methylation analysis in epigenetics research
- Protein sample preparation and assays

Making improvements in life possible — www.qiagen.com

Sample & Assay Technologies
Travel to New Dimensions

Book your ticket to new insights today. It has never been as easy to make discoveries beyond the boundaries of current knowledge. Carl Zeiss works together with researchers around the world to develop systems that open up new perspectives in the life sciences. Find out more about ELYRA, LSM 780 and VivaTome – three unique new vehicles to take you to new dimensions.

www.zeiss.de/nd_science
35th Anniversary Offers

As a trusted resource in the life science community, New England Biolabs would like to thank our customers for 35 years of support. Join us in celebrating our 35th anniversary by visiting www.neb.com to find 12 months of exciting offers, including significant product discounts and giveaways.

Look for the 35th Anniversary Offers icon on our website to learn about our monthly special offer.

www.neb.com
Over 20,000 monoclonal and polyclonal antibodies with more added every day!

- Validation using a variety of applications — WB, IHC, IF, ELISA
- Broad coverage of both primary and secondary antibodies
- Convenient target searches with advanced web tools
- World-renowned technical service

Arabidopsis suspension cells stained with Monoclonal Anti-Actin (Cat. No. A0480) and Anti-Mouse IgG-FITC (Cat. No. F6257).

From M.K. Kandasamy, Genetics Dept., Univ. of Georgia, Athens, GA

Think forward, work smarter with the new YFG powered by Ingenuity.

sigma.com/yfg

Our Innovation, Your Research — Shaping the Future of Life Science

Ingenuity is a registered trademark belonging to Ingenuity Systems.
Congratulations to Dr. Richard Benton on winning the 2009 Eppendorf & Science Prize for his studies on odor detection in the fruit fly, Drosophila. His findings have revealed unexpected evolutionary parallels between insect chemosensation, immune recognition and synaptic transmission.

The annual US$ 25,000 Eppendorf & Science Prize for Neurobiology honors young scientists, like Dr. Benton, for their outstanding contributions to neurobiology research. Dr. Benton is the eighth recipient of this prestigious award. He will be honored at a ceremony held during the week of the 2009 Annual Meeting of the Society for Neuroscience.

You could be next.

If you are 35 years of age or younger and currently performing neurobiology research, you could win the 2010 Prize. Past winners and finalists have come from as far afield as China, Chile, India and New Zealand.
Simplify Adoption of RNA Sequencing with the SOLiD™ System

No matter how you add it up, only the SOLiD™ System offers the highest sensitivity, the greatest dynamic range and the largest catalog of easy-to-use reagent kits. Applied Biosystems—your answer for RNA sequencing.

Learn how to adopt RNA sequencing in your lab by visiting solid.appliedbiosystems.com/rna

- Download pioneering publications
- View interactive on-demand webinars
- Compare microarray to sequencing data
- Browse catalog of easy-to-use Ambion® kits

For Research Use Only. Not for use in diagnostic procedures. © 2009 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.
Meet your new lab partner.

The new Thermo Scientific NanoDrop 2000 and 2000c Spectrophotometers offer true micro-sample analysis, with sample size capability as low as 0.5 µl and a measurement time of less than five seconds. Either of these is the perfect instrument for all your quantitation needs—DNA, RNA, proteins and more. Providing full spectrum UV-Vis results, both instruments can analyze samples with concentrations greater than 15,000 ng/µl (dsDNA) without dilutions. Innovative software makes it easy to build your own methods, design reports and export data. And with both pedestal and cuvette capability, the NanoDrop™ 2000c is the one spectrophotometer that does it all.

Test-drive the NanoDrop 2000 or 2000c in your own lab!

Visit www.nanodrop.com to schedule your test-drive. Try out an instrument and run your own samples. It’s completely free.

Available only in US and Canada
No doctor alone can stop SIDS, childhood epilepsy or brain tumors. That’s why we brought his team to Seattle.

Dr. Nino Ramirez, Director of the Center for Integrative Brain Research at Seattle Children’s Research Institute, is dedicated to finding cures for some of the most serious childhood diseases. A world-renowned researcher and Professor of Neurological Surgery at the University of Washington, Dr. Ramirez leads a team of top brain researchers at Seattle Children’s.

Cure.

At Seattle Children’s, finding cures for tomorrow is as important as treating children today. With a focus on translational research, our teams collaborate daily, both within their own groups and with other leading researchers—in state-of-the-art laboratories with the most advanced technology available. To learn more, visit seattlechildrens.org/research.
FROM START TO FINISH, ENDNOTE X3 KEEPS YOUR RESEARCH ON THE FAST TRACK.

With its world-class speed and track record, EndNote X3 puts your publishing in the lead and keeps you there. Out of the blocks with new features like faster start up times and seasoned favorites like our Cite While You Write™ technology, EndNote X3 is moving fast to deliver the world’s most complete bibliographic solution.

It doesn’t stop there. EndNote X3 is also meters ahead with a personal EndNote Web account that not only transfers groups swiftly between desktop and Web but also organizes your own publication list for the ResearcherID author community. You’ll find new speed in Cite While You Write for Apple® Pages ’09, Microsoft® Word, and now OpenOffice.org Writer 3 for Windows. EndNote X3 even sports new options for chemistry styles, multiple bibliographies within a Word document, and more.

Keep the lead, right to the finish line. Put EndNote X3 on your reference team today!

800-722-1227 • 760-438-5526 • rs.info@thomson.com

Download your free demo or buy online today
www.endnote.com
New Generation of Microtome

- Doubles tissue slice viability.
- Superior to cryostat for free-floating immunohistochemistry.
- Totally eliminates chatter marks.
- Sectioning whole large primate brain capability.

Slice Viability of VF-200 microtome

(P18-P30 Rat Brain)
A: hypothalamus
B: hypothalamus
C: thalamus
D: PAG
E: VTA
F: SNc
G: SNr
H: vagus
I: hypoglossal
J: cortex
K: hippocampus
L: Purkinje neurons

www.precisionary.com (252)758-4613

Science Signaling

Submit your research at:
www.sciencesignaling.org/about/help/research.dtl
If you’re going to reach for the heavens, make sure you’re standing on a sturdy ladder.

www.northropgrumman.com/spacescience

SPACE SCIENCE

If you’re planning a space mission, make sure you have a reliable and experienced partner. Northrop Grumman has the people and the know-how to be that partner. From our experience teaming with NASA on the Chandra X-Ray Observatory, to our role in building the James Webb Space Telescope and the Lunar CRater Observation and Sensing Satellite, Northrop Grumman is equipped to deliver highly reliable solutions for any and all space science missions.
RNAi THERAPEUTICS: A TWO-YEAR UPDATE

Two years is a long time in the world of RNAi therapeutics. Since Science last covered the topic in 2007, the first Phase 3 human clinical trial of an siRNA drug has been prematurely terminated; new off-target effects have been identified; and the first miRNA-based therapeutic entered clinical trials. Yet much remains the same, especially the biggest challenge: delivery. As researchers struggle to overcome these obstacles, optimism persists undiminished. By Jeffrey M. Perkel

Optimism over the potential for RNAi therapeutics is emphatic. Says Judy Lieberman, senior investigator at the Immune Disease Institute of Harvard Medical School in Boston, “I think they are potentially superdrugs.” Lieberman, who recently published a paper using intravaginal delivery of short-interfering RNAs (siRNA) to protect mice from herpes virus infection, is not, she says, “being Pollyanna-ish.”

“I am aware of the problems and the obstacles,” she admits. “To get to the superdrug will take a lot of hard work and dedicated development.”

Yet that doesn’t dim her enthusiasm. The fact is that siRNAs—the double-stranded effectors of RNA interference (RNAi)—can “be developed to silence any gene; can be developed incredibly fast; can have picomolar efficacy; [and] can have an effect that lasts for weeks.”

In the lab, they have become invaluable tools, enabling the easy genetic knockdown of any sequence. The problem with migrating to the clinic, she says, is still delivery. “We have to figure out how to get them into cells better.”

Work on that front is proceeding at a rapid clip, in both academia and industry, as a handful of clinical trials attest. At the same time, new problems have cropped up, including unanticipated immunological effects and impacts on endogenous RNA processing. Others are probing the potential of the field as a whole, for instance with so-called “single-stranded” RNAi strategies.

“It’s obvious from what we know about the biology of RNA interference and how we are able to use it as a tool that it has tremendous potential, if we can harness it,” says David Corey, professor of pharmacology at University of Texas Southwestern Medical Center in Dallas. “Good delivery tools will help us do that.”

DELIVERY, DELIVERY, DELIVERY

John Rossi, the Lidow Family Research Chair at the Beckman Research Institute of the City of Hope of Duarte, California, says the three biggest problems with RNAi therapeutics remain “delivery, delivery, and delivery.”

It is, in fact, a multidimensional problem—to achieve RNAi, systemically administered nucleic acids must survive in circulation long enough to reach their target tissue, enter the desired cells, “escape” their endosome and/or delivery packaging, and finally become incorporated into the RNA-induced silencing complex (RISC)—and researchers have advanced a number of solutions over the past two years.

Tekmira Pharmaceuticals’ SNALP (stable nucleic acid–lipid particle) technology is generating excitement in the community, at least if clinical trials and collaborations are any indication: The company, which has partnered with Roche and Alnylam Pharmaceuticals (which uses SNALP technology in its Phase 1 clinical trials of ALN-VSP02 for advanced liver cancer), in July initiated a Phase 1 clinical trial of its own ApoB SNALP for hypercholesteremia.

“Inclusion of companies in this article does not indicate endorsement by either AAAS or Science, nor is it meant to imply that their products or services are superior to those of other companies.”

“I think they are potentially superdrugs.”
According to president and CEO Mark Murray, SNALP particles “contain four distinct lipids, which play distinct roles in the pharmacokinetics and pharmacodynamics of the product.” Mark Kay, director of the program in human gene therapy at Stanford University, who is on the company’s scientific advisory board, calls the technology’s therapeutic window “really the best out there.” He adds, “The doses at which there are clinically relevant responses do not cause toxicity in animal studies.”

Daniel Anderson at the Massachusetts Institute of Technology, collaborating with Alnylam, has broadened the library of compounds that potentially can be incorporated into such systems. His team used combinatorial chemistry to generate “over 1,200 structurally diverse lipid-like molecules,” a subset of which could deliver nucleic acids to cultured cells, mouse, rat, and nonhuman primates—not to mention ovarian cancer molecules, a subset of which could deliver nucleic acids to cultured cells, mouse, rat, and nonhuman primates—not to mention ovarian tumor xenografts in mice. “It really expanded the chemical space people tried,” says Anderson.

Others are investigating nonlipid-based approaches. Steven Dowdy’s lab at the University of California, San Diego School of Medicine, developed a “peptide-transduction domain”/double-stranded RNA-binding domain fusion protein that can both bind siRNA and cross cell membranes. According to Dowdy’s graduate student Bryan Meade, the resulting particles are nontoxic, internalized by macrophagocytes, and then apparently degraded intracellularly, releasing the siRNA. “We can see RNAi as fast as 6 hours after delivery, as measured by quantitative RT-PCR,” he says.

Meanwhile, at the University of Massachusetts Medical School, Michael Czech, professor and chair of molecular medicine, has developed what he calls, “to our knowledge, the only technology that has been published that allows oral delivery of siRNA.”

GeRPs—or beta-1,3-D-glucan-encapsulated siRNA particles—are “solid but porous shells composed almost entirely” of a specific yeast cell wall component, says Czech. Within the glucan shell, the particles wrap siRNA in a transfection reagent, cationic polyethyleneimine. Delivered orally to mice, the GeRPs can silence tumor necrosis factor-alpha expression in gut macrophages.

RNAi therapeutics firm RXi Pharmaceuticals is using GeRPs in its in-house development efforts, says Tod Woolf, president and CEO, as well as so-called “self-delivering rRNAs”—chemically modified RNAs that can enter cells without a vehicle. Though he declines to describe the enabling chemistry, Woolf does say rRNA technology involves three different kinds of modifications: “They make compounds bind cells, get taken up, and get released into cells.”

LOCAL VICTORIES

Companies have also had success with local delivery strategies.

Completed in spring 2008, Alnylam’s 88-patient Phase 2 GEMINI trial of ALN-RSV01, a naked, chemically modified siRNA delivered intranasally against respiratory syncytial virus (RSV), “provided the first human proof of principle results showing statistically significant antiviral efficacy [from RNAi],” says John Maraganore, CEO of Alnylam.

Specifically, ALN-RSV01 produced “an approximately 40 percent reduction in RSV infection rate and 95 percent increase in infection-free subjects,” according to a corporate statement. Data from a second, 24-patient Phase 2 trial, announced in July, indicated it too “achieved its primary objective of demonstrating safety and tolerability” over 90 days posttreatment. But, Maraganore clarified, “[That] study wasn’t powered to show activity.”

TransDerm, with the International Pachyonychia Congenita (PC) Consortium and the PC Project, found smaller-scale success with a one-patient, placebo-controlled Phase 1b trial of TD101, a naked, unmodified siRNA for treatment of PC.

A painful genetic disorder, PC causes blisters and thickened skin on the soles of the foot, says company CEO Roger Kaspar; just to administer the drug intradermally required pain medication. Following injection, “we saw what appeared to be pink skin that was no longer tender to the touch,” Kaspar says.

However, as injections are especially problematic for PC patients, TransDerm is investigating other delivery options, including dissolvable microneedle arrays and even a skin cream dubbed “GeneCreme.”

With so many available options, it’s unlikely any one will dominate the RNAi landscape. “There’s not going to be a one-size-fits-all solution,” says Beverly Davidson, the Roy J. Carver Biomedical Research Chair of Internal Medicine at the University of Iowa, who pursues both naked and viral-mediated RNAi approaches to central nervous system disorders. “It’s more likely that one technology will be better for one application than another.”

THREE STEPS FORWARD, ONE STEP BACK

Unfortunately, as with any new science, unexpected roadblocks inevitably arise on the way to the clinic. “With every three steps forward, there is a step back,” Davidson says.

Christina Leslie of the Memorial Sloan-Kettering Cancer Center and Debora Marks of Harvard Medical School exposed one such setback this year when they showed that transfection of siRNA into cells tends to upregulate microRNA-controlled genes, suggesting that the exogenous nucleic acids can swamp intracellular RNA-processing machinery.

Jayakrishna Ambati’s lab exposed another one, in March 2008, they demonstrated that a naked siRNA, injected into the eye, could block angiogenesis in mouse models of age-related macular degeneration regardless of its sequence. Whether targeting vascular endothelial growth factor or green fluorescent protein, a random sequence or firefly luciferase, every siRNA seemed to block choroidal neovascularization, says Ambati, the Dr. E. Vernon Smith and Eloise C. Smith Endowed Chair at the University of Kentucky.

The findings seemed to fly in the face of accepted RNAi wisdom—and directly into the path of an ongoing human clinical trial. Opko Health’s bevasiranib, a naked siRNA targeting vascular endothelial growth factor for age-related macular degeneration (AMD), was on track to become the first FDA-approved siRNA therapeutic.

The drug had ridden into Phase 3 trials on the basis of animal data indicating it could block the subretinal vasculature that causes blindness in AMD. But those studies used a transfection reagent not used in the human trials. Ambati’s results suggested the drug’s efficacy had nothing to do with RNAi, but rather with an innate immune reaction to double-stranded RNAs mediated by the Toll-like receptor-3 (TLR3).

Ambati says the findings are not terribly surprising; researchers knew that in general, cells don’t take up naked siRNA. “It seems to me that there was an irrational exuberance about the technology, and to be frank, the science behind these [original bevasiranib animal studies] is not sound and contradicts very good science showing that double-stranded siRNAs don’t get into cells.”

That perception seemed vindicated March 6 when Opko Health, citing the recommendation of its Independent Data Monitoring Committee, announced it was terminating its Phase 3 trial of bevasiranib because “the trial, as structured, was unlikely to meet its primary...
RNAi Therapeutics

end point.”

But Phillip Sharp, Institute Professor at the Massachusetts Institute of Technology, cautions against drawing a straight line from Ambati’s findings to Opko’s announcement. “The TLR studies were interesting, but small RNAs interacting with TLRs had been described before,” he says. “That does not in any way qualify the utilization of small RNAs in clinical studies.”

For its part, Opko remains bullish on RNAi, says Jamie Freedman, executive vice president of research and development and business development. Though no siRNA trials are ongoing, the company has not abandoned bevasiranib, he says. It is, however, pursuing other delivery options, as well as other siRNA targets. But Opko also is not putting all its eggs in one basket; the company “is also expanding its portfolio with other kinds of therapeutics, both in and outside of ophthalmology.”

GOING SINGLE-STRANDED

Though researchers have identified ways to circumvent the TLR3 effect (using siRNAs shorter than 21 bases, for instance), just as they have ways to avoid miRNA swamping, it’s also true that not all oligonucleotide structures elicit these responses.

Double-strand RNAs also present fundamentally different—and more complex—manufacturing and delivery challenges than single-strand molecules. “A double-stranded structure is structurally and functionally as different from a single strand as night and day,” says Isis CEO Stan Crooke. Rigid where a single strand is relatively flexible, hydrophilic rather than amphipathic, and with double the mass and volume of a single-stranded molecule, double-stranded RNAs—unlike their single-stranded counterparts—are not readily distributed to most organs in vivo, Crooke says.

For these reasons, some are pursuing single-strand RNAi strategies instead of double-stranded ones. The technique differs from traditional antisense RNA, in that antisense RNA targets RNAs for degradation via RNase H, while RNAi does the same using RISC.

According to Crooke, that distinction is one of semantics, not science. “I don’t believe the field has broadened. I believe RNAi researchers’ understanding has broadened. siRNA is an antisense mechanism: The active moiety is the antisense strand, and the sense strand is a drug-delivery device.”

Developer of Vitravene, the first FDA-approved antisense therapeutic, Isis now appears poised for the agency’s next oligonucleotide approval, as well: mipomersen. One of 19 drugs in Isis’ pipeline, mipomersen is a “first-in-class” ApoB synthesis inhibitor “to reduce LDL-C in patients with high cholesterol and who have high cardiovascular risk.” In May the company disclosed Phase 3 clinical data of individuals with familial hypercholesteremia indicating that the drug had “met its primary endpoint, with a 25 percent reduction in LDL cholesterol after 26 weeks of treatment, versus 3 percent for placebo.” According to Crooke, the company plans to file an NDA in 2010.

Regulus Therapeutics and Santaris Pharma are also pursuing antisense strategies, but directed at microRNAs rather than messenger RNAs.

“miRNA inhibition provides a way to affect multiple gene pathways that have evolved together and are regulated by the target miRNA,” says Henrik Ørum, Santaris’s chief scientific officer. “This pathway modulation is fundamentally different from the single-gene approach achieved by targeting and reducing the expression of an mRNA.”

Santaris achieved an industry milestone in 2008 when it initiated a Phase 1 clinical trial of SPC3649, a locked nucleic acid–based antisense molecule targeting miR-122, a host RNA required for hepatitis C replication, and the first microRNA-targeted therapeutic to reach the clinic.

Regulus achieved a milestone of its own when it helped show the therapeutic benefits of antagonizing miR-21 in a mouse model of heart failure. According to Kleanthis Xanthopoulos, Regulus president and CEO, the study “demonstrates for the first time that inhibition of an overexpressed miRNA has a therapeutic effect in a mouse model of human disease.”

For Xanthopoulos, microRNA represents the “third column” of what he calls the “genus [of] ‘RNA therapeutics’” (the others being antisense RNA and RNAi). And, with the constant discovery of new roles and species of noncoding RNAs, that genus is growing—as is its potential. That’s because unlike monoclonals, which can target only extracellular proteins, oligonucleotide therapeutics “can touch every single gene, and every miRNA,” Xanthopoulos says. It is an idea Maraganore calls, “drugging the undruggable genome,” and it could be huge. “If proteins and monoclonal antibodies are a $40 billion industry, RNA therapeutics can be significantly higher,” says Xanthopoulos.

It won’t happen overnight—it took two decades to turn monoclonals into an approved therapeutic—but with some two-dozen oligonucleotide compounds in clinical trials, including at least eight siRNAs (two each from Alnylam and Quark Pharmaceuticals, plus one each from Calando Pharmaceuticals, Tekmira, TransDerm, and Silence Therapeutics), and around 10,000 people having been dosed in those and previous trials, “We are not talking about potential, we are at a tipping point,” says Xanthopoulos.

Jeffrey M. Perkel is a freelance science writer based in Pocatello, Idaho.

DOI: 10.1126/science.opms.p0900039

Featured Participants

Alnylam
www.alnylam.com

City of Hope
www.cityofhope.org

Harvard Medical School
www.hms.harvard.edu

Isis Pharmaceuticals
www.isispharm.com

Massachusetts Institute of Technology
www.mit.edu

Memorial Sloan-Kettering Cancer Center
www.mskcc.org

Opko Health
www.opko.com

Regulus Therapeutics
www.regulusrx.com

Rxi Pharmaceuticals
www.rxipharma.com

Santaris Pharma
www.santarisis.com

Stanford University
www.stanford.edu

Tekmira Pharmaceuticals
www.tekmirapharm.com

TransDerm
www.transderminc.com

University of California, San Diego School of Medicine
health.ucsd.edu

University of Iowa
www.uiowa.edu

University of Kentucky
www.uky.edu

University of Massachusetts Medical School
www.umassmed.edu

UT Southwestern Medical Center
www.utsouthwestern.edu

Jeffrey M. Perkel is a freelance science writer based in Pocatello, Idaho.

DOI: 10.1126/science.opms.p0900039
Peptide Delivery System
Transductin is a peptide-based double-stranded RNA (dsRNA) transduction delivery system. Intended for in vitro testing and high throughput screening projects, Transductin complexes with dsRNAs and delivers them across cell membranes via macropinocytosis. This mechanism minimizes the risk of the dsRNA triggering an innate immune response and has virtually no toxicity, both of which are common drawbacks when using cationic lipid transfection. As a result, Transductin enables delivery of dsRNAs to almost all cell types, including those that are traditionally difficult to transfect, such as JAWSII and PC12.

Ultraviolet Sterilization Cabinets
The compact uvCAB ultraviolet (UV) sterilization cabinets provide safe, nucleic acid–free environments for setting up polymerase chain reactions (PCR). The cabinets minimize the potential for PCR contamination, providing the equivalent of a “mini clean-room.” The cabinets are suitable for the decontamination of equipment used for setting up PCR because they include powerful UV lights that denature nucleic acids in 5 to 30 minutes. The lights are timer controlled with safety switches that automatically turn them off when cabinet doors are opened to prevent user exposure to UV light. The cabinets also provide an efficient shield against beta radiation, so can be used safely with isotopes such as 32P. They also include a white light for visibility when working inside the cabinet.

Cloning Linkers
The AIR Adenylated Linkers are 5’-adenylated linker oligonucleotides that facilitate microRNA cloning and sequencing. The linkers are modified to prevent self-ligation and to improve microRNA cloning efficiency. Custom AIR Adenylated Linkers can be designed to meet any user need. Predesigned AIR Adenylated Linkers are available with BanI, Aval, Styl, or EcoRI restriction sites.

Desalting Pipette Tips
The Aspire RP30 desalting pipette tips purify, desalt, and concentrate peptides or low molecular weight proteins. The Aspire tip is a 200-µl pipette tip containing a bed of proprietary styrene-divinylbenzene reversed-phase resin. The tips offer higher binding capacity than conventional C18 desalting tips, allowing purification of up to 30 µg of total peptide from 15–200 µl sample volumes. They are most suitable for desalting and concentrating peptides, low molecular weight proteins, and complex protein samples prior to liquid chromatography/mass spectrometry analysis. The Aspire tip purification method makes use of a color-coded, multichannel protocol that streamlines low to medium throughput sample cleanup.

Intracellular Delivery System
The CellLuminate VPS (vesicle-forming polymer system) offers greater efficiency of intracellular delivery of bioactive molecules than conventional liposomal systems. The system can deliver anything from fluorophores to RNA, DNA, and proteins with minimal cytotoxic effects. CellLuminate is made from proprietary biomimetic copolymer and exploits the natural cellular endocytotic pathways. Because the surface chemistry of the vesicles mimics that of cell membranes, the system increases the rate and amount of vesicles endocytosed. CellLuminate VPS is designed so researchers can prepare their own vesicles to encapsulate any bioactive agent, easily and without experience.

RNA Isolation Kit
The PowerWater RNA Isolation Kit is designed to isolate high-quality RNA from the microorganisms in any water source. Featuring patented IRT (inhibitor removal technology), the kit can be used even with challenging turbid water samples. It can isolate RNA from all microorganisms found in water, including bacteria, fungi, and algae, in less than 40 minutes, including the deoxyribonuclease step. The kit’s convenient small-tube format is compatible with all commonly used water filter types.

Integrated DNA Technologies
For information 319-665-7208
www.idtdna.com

Biocompatibles
For information +44-(0)-1252-732-671
www.biocompatibles.com

RNA isolation kit
For information 800-606-6246
www.mobio.com/water

Thermo Fisher Scientific
For information 508-742-5254
www.thermofisher.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
The New Journal from AAAS and Science.

Translational medicine lies at the expanding intersection of basic science and clinical medicine. As this field grows in importance, the need for reliable, peer-reviewed information in this area is growing as well. To address this need, AAAS is launching Science Translational Medicine, a new online journal that examines all aspects of this interdisciplinary approach to solving human health problems.

With reviews and original research on topics including cardiovascular disease, cancer, immunology and more, Science Translational Medicine covers an array of disciplines and a range of discoveries. The result is a new journal from the publishers of Science – a journal with novel insights and discoveries in the exciting field of translational medicine.

For more information, and to subscribe, visit: www.ScienceTranslationalMedicine.org
FREE PCR ARRAYS
Compatible with ALL major PCR instruments!

Gene Expression and Epigenomic Analysis

FREE PCR ARRAYS OFFER
* Visit Online for Details & Complete PCR ARRAY List
www.SABiosciences.com/Science7.php
ACT NOW! Offer Ends October 31st 2009

The RT Profiler PCR Array is a complete system including FREE online data analysis software.