
Image: David Sandwell/University of California, San Diego; Paul Wessel/University of Hawaii
Protein kinase G is required for the differentiation and fat-burning function of brown adipose tissue.

RESEARCH ARTICLE: RIA M Regulates the Cytoskeletal Distribution and Activation of PLC-γ1 in T cells
N. Patsoukis et al.
RIAM, an adaptor protein that regulates integrin signaling, is found to also function in T cell receptor-proximal signaling.

PROTOCOL: Quantitative Analysis of Protein-Lipid Interactions Using Tryptophan Fluorescence
C. A. Kraft et al.
The intrinsic fluorescence of tryptophan can be used to quantify the interaction between proteins and lipids.

PODCAST
A. Pfeifer and A. M. VanHook
Protein kinase G is required for the differentiation and fat-burning function of brown adipose tissue.

TARGETED 3’ PROCESSING OF ANTISENSE TRANSCRIPTS TRIGGERS ARABIDOPSIS FLC CHROMATIN SILENCING
F. Liu et al.
A backward transcript of the FLOWERING LOCUS C gene of Arabidopsis is involved in regulation of the sense-strand transcription.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.

IRON PARTITIONING AND DENSITY CHANGES OF PYROLITE IN EARTH’S LOWER MANTLE
T. Irfane et al.
Increasing the compositional complexity of mantle samples causes an electronic spin transition to occur at lower pressures.