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Few infectious diseases are entirely human-specific: Most human pathogens also circulate
in animals or else originated in nonhuman hosts. Influenza, plague, and trypanosomiasis are
classic examples of zoonotic infections that transmit from animals to humans. The multihost
ecology of zoonoses leads to complex dynamics, and analytical tools, such as mathematical
modeling, are vital to the development of effective control policies and research agendas. Much
attention has focused on modeling pathogens with simpler life cycles and immediate global
urgency, such as influenza and severe acute respiratory syndrome. Meanwhile, vector-transmitted,
chronic, and protozoan infections have been neglected, as have crucial processes such as
cross-species transmission. Progress in understanding and combating zoonoses requires a new
generation of models that addresses a broader set of pathogen life histories and integrates across
host species and scientific disciplines.

Arecent survey of all recognized human
pathogens revealed that over half are
zoonotic (1, 2), and nearly all of the most

important human pathogens are either zoonotic
or originated as zoonoses before adapting to hu-
mans (3). The three most devastating pandemics
in human history, the Black Death, Spanish in-
fluenza, andHIV/AIDS,were caused by zoonoses
(4), as were 60 to 76% of recent emerging infec-
tious disease events (2, 5). Underlying these pat-
terns are specific public health challenges arising
from the complex multihost ecology of zoonotic
infections (6, 7), as well as accelerating environ-
mental and anthropogenic changes that are alter-
ing the rates and nature of contact between human
and animal populations (8–10). Following a series
of recent outbreaks [e.g., avian and swine influ-
enza,West Nile virus, and severe acute respiratory
syndrome (SARS)], a rising sense of urgency has
stimulated a broad increase in research on zoonoses,
ranging from dissection of the molecular deter-
minants of host specificity (11) to viral prospecting
in African rain forests (12). Such endeavors have
produced important insights into underlying pat-
terns and basic mechanisms of disease, but in-
tegrating this new knowledge across scales and
applying the results to public health policy are dif-
ficult given the nonlinear and cross-species inter-

actions inherent to zoonotic infections (13). These
complexities can be addressed by harnessing the
integrative power and mechanistic insights attain-
able from analysis of population dynamic models
of zoonotic transmission. Here, we review the role
of dynamical modeling in the study of zoonoses
through an analysis of the current status of the
field. Our specific goals are to detect gaps in
present knowledge and to identify the priorities
for future research that will unify, focus, and propel
the interdisciplinary push to combat zoonoses.

A Taxonomy for Zoonotic Dynamics
Wolfe et al. (3) proposed a useful classification
scheme for pathogens, delineating five stages span-
ning the range from those exclusively infecting
animals (stage I) to those exclusively infecting hu-
mans (stage V). The zoonotic component of this
scheme (stages II to IV) can be divided into the
constituent phases of transmission and associated
epidemiological mechanisms (Fig. 1A). Stage II
pathogens are those, like West Nile virus or Bru-
cella abortus, that can transmit from animals to
humans to cause “primary” infections but do not
exhibit human-to-human (“secondary”) transmis-
sion. Stage III pathogens, such asmonkeypox virus
and Leishmania infantum, spill over into human
populations from animal reservoirs and can cause
limited cycles of human-to-human transmission
that stutter to extinction. Stage IV pathogens orig-
inate and persist in animal reservoirs but can cause
self-sustaining chains of transmission in human
populations; examples include Yersinia pestis
(plague) and pandemic influenza.

Our approach diverges from Wolfe et al. by
basing the distinction among stages II to IV on
the basic reproductive number, R0, from the per-
spective of the human hosts. This quantity, de-
fined as the expected number of secondary cases
produced by a typical infectious individual in a
wholly susceptible population, is a central con-

cept in epidemiological theory (14, 15).R0 enables
us to distinguish stages II to IV on dynamical
grounds because it quantitatively demarcates path-
ogens capable of sustained transmission among
humans (those with R0 > 1) from those doomed to
stutter to local extinction (R0 < 1) or those with no
human-to-human transmission (R0 = 0).

The dynamics of all zoonoses involve multi-
ple phases, including transmission in the animal
reservoir, spillover transmission into humans,
and possibly stuttering or sustained transmission
among humans. Cross-species spillover transmis-
sion is the defining characteristic of a zoonosis,
and examination of the factors influencing the
force of infection from animals to humans re-
veals three distinct components (Fig. 1B): the
prevalence of infection in the animal reservoir,
the rate at which humans come into contact with
these animals, and the probability that humans
become infected when contact occurs. These com-
ponents are each influenced by diverse proper-
ties of natural, agricultural, and human systems,
with important differences driven by the path-
ogen’s mode of transmission. Important quanti-
tative or qualitative differences may also arise
between zoonoses that use wildlife rather than
domesticated animals as reservoirs, owing to dif-
ferences in frequency, duration, and nature of
cross-species contacts and in opportunities for
human intervention.

Dynamical Models for Zoonoses
Mathematical models of the population dynam-
ics of infectious diseases (14, 15) use a well-
established (and ever-growing) body of theory to
construct simplified representations of epidemi-
ological systems. Crucially, dynamical models ex-
plicitly represent the key population groups and
central processes of epidemic spread. Infectious
diseases differ from chronic conditions such as
cancer or heart disease, because the risk of infec-
tion depends not only on personal risk factors but
also upon the state of other individuals in the
population. This leads to nonlinear interactions
among subgroups in a population that can re-
sult in complex and sometimes counterintuitive
epidemic behavior. In the fundamental susceptible-
infected-recovered (SIR) model, groups of indi-
viduals within the host population are classified
as “susceptible” to infection, “infected” and able to
transmit the pathogen, or “recovered” and immune
to reinfection (Fig. 2A). Transmission of infection
to new cases is driven by contacts between suscep-
tible and infectious individuals. Although crude,
this model reproduces the classical epidemic curve
(Fig. 2B) and has been remarkably successful in
elucidating fundamental principles, including the
“tipping point” threshold for epidemics to take off
if is greater than 1, and the potential to achieve
“herd immunity” through vaccination programs.

Because of the emphasis on mechanism, dy-
namical models can address questions outside the
scope of statistical and geospatial analyses (Fig.
2C). By adjusting parameter values or reformulat-
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ing mechanisms, modelers can perform “what if ”
experiments to study problems that are ethically or
logistically unfeasible to study in the real world,
for example, by exploring the efficacy of different
control measures or extrapolating population-level
consequences of clinical or laboratory findings.
Such cross-scale synthesis also enables researchers
to extract key characteristics of epidemics, such as
changes in the value of the “effective” reproduc-
tive number (Re) as control measures are imposed
or the supply of susceptible hosts is depleted.
Models can also evaluate the potential influence of
unknown information, helping to set priorities for
data collection and to define the uncertainty as-

sociated withmodel outcomes. Finally, dynamical
models can be used to predict future trends of dis-
ease spread, although such projections must be
accompanied by a comprehensive uncertainty
analysis.

Population dynamic modeling has made ma-
jor contributions to our understanding of zoonotic
infections. During the bovine spongiform enceph-
alopathy (BSE) epidemic in Britain, models were
used to extract and synthesize basic knowledge
from clinical and epidemiological data, while also
extrapolating trends fromunfolding evidence about
themysterious pathogen (16, 17). Models of rabies
transmission have provided biological insight,

guided vaccination policy, and predicted spatial
spread (18–20). Following the emergence of
SARS coronavirus (SARS-CoV), models were
applied to measure the virus’s transmissibility and
to refine plans for epidemic containment via in-
fection control and case isolation (21, 22). Model-
ing studies predicted that quarantine would be a
relatively inefficient means of controlling SARS
(23, 24), and this was confirmed in later analyses
of outbreak data (25).

Comparative analyses have characterized epi-
demiological phenomena, such as host hetero-
geneity, across suites of zoonotic pathogens and
have coupled the findings to models to study dy-
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Fig. 1. (A) Schematic diagram of zoonotic transmission dynamics. Zoonoses
can involve as many as four dynamical phases, including enzootic or epizootic
circulation in the animal reservoir, spillover transmission from animals to
humans, and sometimes self-limiting stuttering chains of human-to-human
transmission or sustained transmission leading to outbreaks. Adapting Wolfe
et al. (6), we classify zoonotic pathogens into three stages (II, III, and IV)

according to their transmissibility among humans. (B) The spillover force of
infection is determined by the product of three major components. The force
of infection is defined as the per capita rate of infection of susceptible humans.
Beneath each major component is a list of contributing factors drawn from
many disciplines; these factors may pertain to all zoonoses or to particular
transmission modes, as indicated.
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namical consequences (26, 27). For instance, anal-
ysis of detailed outbreak data shows that highly
infectious “superspreaders” exist for all pathogens
(although to varying degrees), and modeling
shows that their existence makes outbreaks rarer
but more explosive (26). Theoretical studies have
illuminated central mechanisms relevant to zoonotic
dynamics: Analysis of the population dynamics
of multihost pathogens revealed the influence of
host species diversity on reservoir dynamics and
spillover risk (28), while a hybrid transmission-
evolution model showed the potential for stage
III zoonoses to adapt to humans before their stut-
tering chains of transmission die out (29). Zoonotic
dynamics have clear parallels with invasion biol-
ogy (as spillover, stuttering chains, and outbreaks
correspond roughly to the invasion phases of
introduction, establishment, and population ex-
pansion), raising the possibility of fruitful cross-

fertilization between theoretical frameworks for
these fields (30).

In contrast to the complete lack of application
of models during the last influenza pandemic in
1968, dynamical models now play a key role in
preparing for and responding to pandemic influ-
enza strains [e.g., (31)]. For example, school clo-
sure has been identified as an important control
measure during the early phase of pandemic spread
(32) and was implemented in cities across the
United States that were affected by the novelH1N1
influenza (“swine flu”) in Spring 2009. Models of
both influenza and SARShave exposed the futility
of imposing travel restrictions once a pathogen is
already spreading within a region [e.g., (24, 33)],
and such restrictions were largely avoided, follow-
ing the recognition that the 2009 H1N1 influenza
strain was already widespread when it was discov-
ered. Meanwhile, established methods for the esti-

mation ofR0 have helped to speed determination of
this crucial parameter for the pandemic strain (34).

Surveying the Field: Skews and Gaps
Where has modeling research concentrated across
the gamut of zoonotic pathogens and epidemio-
logical challenges? Where are the major gaps in
our knowledge, and how can dynamical models
be used to integrate empirical findings, guide health
policy, and drive innovative research?

We systematically surveyed 442 modeling
studies addressing 85 species of zoonotic patho-
gens, and found surprising gaps and tremendous
skews in coverage (for details, see supporting
online material). Viral diseases have dominated
zoonotic modeling, led by pandemic influenza,
SARS, and rabies, which together account for
almost half of all zoonotic models (Table 1 and
fig. S1). Bacterial and protozoan pathogens have
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Fig. 2. Dynamical models for epidemics. (A) Schematic diagram of the basic
SIR model, showing progression of hosts from susceptible to infected to recov-
ered states. The dotted arrows represent transmission of infection to new cases
resulting from contacts between susceptible and infected individuals. (B) The
simple epidemic curve (red) predicted by the SIR model for a closed population
(i.e., without renewal by immigration or birth of new hosts) and R0 > 1. The
curves for the declining proportion of hosts that are susceptible to infection is

black and for the rising proportion that are recovered and immune is blue. (C)
Dynamical models provide unique insights and allow researchers to ask ques-
tions that cannot be addressed by other methods. For example, these models
enable estimation of epidemiological parameters linked to key mechanisms,
integration of data spanning multiple spatial scales, comparison of alternative
control strategies, prediction of future trends, and explanation of observed
patterns based on mechanistic hypotheses.
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received much less attention relative to their im-
portance. Vector-borne and food-borne zoonoses
also have been neglected by dynamical modelers
compared with infections transmitted by direct
contact. Consequently, many zoonotic diseases
of great public health concern, such as leptospi-
rosis and yellow fever, have rarely been modeled
(Table 1), and so we lack a formal framework to
understand the transmission dynamics of these
diseases or to respond to sudden changes in their
epidemiology.

The current literature often fails to account for
the multihost ecology of zoonotic pathogens. The
great majority of modeling studies consider just a
single phase of the zoonotic process, typically fo-
cusing on dynamics in the reservoir or outbreaks
in the human population (fig. S2). Models incor-
porating spillover transmission—the defining pro-
cess of zoonotic dynamics—are dismayingly rare.
For directly transmitted zoonoses, we found only
six dynamical studies that include a mechanistic
model of animal-to-human spillover. For vector-
borne and food-borne infections, this number is
higher but still a clear minority. Rather than inte-
grating across host species and dynamical phases
to address questions aimed at the zoonotic nature
of these pathogens, too often we find zoonoses
being treated “piece-wise” as a concatenation of
single-host processes (or worse, some phases are
ignored completely).

A similar gap is evident in the modeling of
stuttering chains of transmission (fig. S2), wherein
zoonotic pathogens transmit inefficiently among
humans so any minor outbreaks triggered by spill-
over events inevitably die out. Despite their lim-
ited epidemic potential, such pathogens present
epidemiologists with considerable challenges that
are often best addressed by using mathematical

models. For instance, monkeypox virus has long
been known to spread inefficiently among humans,
but its transmissibility appears to be rising as pop-
ulation immunity drops because fewer people have
been vaccinated against smallpox (35, 36). Surveil-
lance data for stage III zoonoses, such as monkey-
pox, Nipah virus, or H5N1 avian influenza, can be
analyzed to estimate human-to-human transmis-
sibility and to define signatures of possible viral
adaptation to humans (37). Given that pathogens
in this class are the best-identified threats for fu-
ture pandemics in the human population, study of
their dynamics should be prioritized for attention.

Several patterns stand out among the existing
models (fig. S3). They have been primarily applied
to studying the efficacy of control measures, with
the secondary aims of estimating epidemiological
parameters of interest and explaining observed
patterns in field data. Prediction of future trends
is a major focus for models of pandemic influ-
enza and BSE, but this aim is rarely applied to
other pathogens. Equally notable are the ques-
tions missing from these studies. The dynamics
of pathogen populations within individual hosts
have rarely been included in models of zoonotic
transmission dynamics, with the notable excep-
tion of food-borne pathogens, where the associ-
ation between pathogen titers in livestock (before
and during processing into meat) and infection
risk to humans has been studied. Evolutionary
issues are similarly neglected, despite the press-
ing concerns surrounding adaptation to humans
and pandemic emergence for several pathogens.
It is particularly striking that of the 62 models of
SARS dynamics we found, none deals with path-
ogen evolution, despite the accumulating evi-
dence that the virus was adapting rapidly as it
circulated among humans (38). This gap remains

because of the paucity of data linking pathogen
genotypes to phenotypes (in particular, transmis-
sibility) at the population scale. This is an impor-
tant and tractable topic for empirical and theoretical
research, especially given the increasing availa-
bility of genetic sequence data (39). Interactions
among pathogen species have also been largely
neglected, even though empirical data show that
coinfections are relatively common and that dif-
ferent pathogens can facilitate or hamper each
other’s spread through direct or immune-mediated
interactions (40). Finally, there has been little re-
search that integrates transmission dynamics of
zoonoses with economic considerations, despite
the clear relevance of this synthesis to control pol-
icy (e.g., 32).

Data and the Link to Reality
A crucial component of a robust and applicable
science of zoonotic dynamics is the use of data to
estimate parameters and to validatemodel output,
and another is the thoughtful treatment of data-
limited situations based on rigorous sensitivity
analysis. Although most studies use some data to
parameterize or validatemodels, their use is highly
variable (fig. S3B). At the simplest, many au-
thors borrow data-derived parameter values from
earlier studies or fit model projections to epidemic
curves. More advanced studies use dynamical
reasoning to arrive at new methods of gleaning
insights from available data (e.g., 41). For studies
aimed at projecting epidemic trends, the gold stan-
dard is to validate model output by comparing it
with independently gathered data that has not
been used for the construction of the model. No-
table examples include the “post-diction” of global
spread of the 1968 influenza pandemic, based on
air traffic data (42), and the validation of BSE

Table 1. Modeling effort for selected zoonotic pathogens, organized by pathogen stage (see Fig. 1A) and number of published dynamical models.
Abbreviations: EV, encephalitis virus; HF, hemorrhagic fever; BSE, bovine spongiform encephalopathy.

Pathogen stage
Number of modeling studies

0 1 to 5 6 to 10 11 to 20 >20

II
(Spillover only)

Babesia microti
Bartonella henselae

Chlamydophila psittaci
Coxiella burnetii

Francisella tularensis
Hendra virus

Rickettsia prowazekii
Rickettsia typhi

Streptococcus suis
Venezuelan equine EV

Bacillus anthracis
Campylobacter jejuni

Japanese EV
Leptospira interrogans

Puumala virus
Salmonella typhimurium

Tick-borne EV

Brucella abortus
Louping ill virus
Toxoplasma gondii

Trypanosoma brucei rhodesiense
West Nile virus

Borrelia burgdorferi
Sin Nombre virus
Trypanosoma cruzi

BSE
Rabies virus

III
(Spillover +
stuttering chains)

Andes virus
Lassa virus

Machupo virus
Nipah virus

Leishmania chagasi
Crimean-Congo HF virus

Monkeypox virus
Yersinia enterocolitica

Leishmania infantum E. coli O157:H7 Influenza A (avian)
Mycobacterium bovis

IV
(Spillover +
possible outbreaks)

Barmah forest virus
Dengue virus (sylvatic)
Leishmania donovani

Marburg virus
Mayaro virus

Chikungunya virus
Ebola virus

Ross River virus
Yellow fever virus

Yersinia pestis Influenza A (pandemic)
SARS-CoV
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models developed for England,
by using independent data from
Northern Ireland (43). Models
can also interact powerfullywith
population-level experiments
to confirm mechanisms under-
lying observed patterns (44).

Broad patterns of data usage
are, of course, determined by the
availability of relevant data sets.
The free availability of epidemic
curves led to two-thirds of SARS
modeling studies’ incorporating
population-level data, and early
analyses of SARS disease pro-
gression enabled widespread use
of data-driven parameters (45).
For influenza, the well-known
clinical course of infection has
enabled widespread use of data
in parameterizing models, but
model-fitting to epidemic curves
has been less common. Studies
focusing on zoonoses in their animal reservoirs
(e.g., rabies and bovine tuberculosis) have relied
largely on individual-level parameters, owing to
the relative rarity of collated population data for
animal diseases. In contrast, however, all the BSE
models were fit to population data, which reflects
the intensive and cumulative study of the British
epidemic and later application of these methods
to BSE data from other countries.

Data-free modeling tends to be more common
for pathogens that have fewer models overall; this
likely reflects either the complete unavailability
of data or the lack of opportunity to borrow data-
informed parameter values from other studies.
However, a broad and vibrant literature has ap-
plied statistical methods to analyze the epidemi-
ological and spatial patterns of zoonotic infections
[e.g., (46, 47)], and opportunities to link these
findings with dynamical models too often go
unrealized.

Looking beyond the use of data, the best
modeling studies are those that engage substan-
tively, and realistically, with current thinking in
biology or public health. However, detail andmodel
complexity are not equivalent to realism, and a
simple model can yield more insight than a mas-
sive simulation that is not fully understood.Detailed
simulation models are necessary to address some
important questions, butmodel complexity should
be increased cautiously and with an awareness of
the associated costs of reduced transparency, a
multiplicity of often unknown parameters, and
the resulting need for intensive investigation of
howmodel assumptionsmay influence conclusions
[e.g., (31)]. A hierarchical approach, comparing
the behavior of models with different degrees of
detail, can aid the design and interpretation of
complex models.

ResponseDynamics and theDeterminants of Effort
Given the prevailing focus of zoonotic models on
designing and assessing control measures, as well

as the unique potential of models to estimate im-
portant characteristics of epidemics, it is instruc-
tive to consider the timelinesswithwhichmodelers
respond to emerging threats. For zoonotic patho-
gens that either were newly discovered or have
made sizable range shifts in recent decades, we
constructed temporal profiles of the scientific lit-
erature to characterize the dynamics of the model-
ing community’s response (Fig. 3 and fig. S4).
The poster child for rapid response is SARS, for
which several modeling analyses were completed
within months of the pathogen’s and epidemic’s
discovery and were influential in designing out-
break control measures. For Borrelia burgdorferi,
the causative agent of Lyme disease, a 10-year
delay from discovery to the first model has been
followed by intermittentmodeling efforts, perhaps
reflecting the difficulty of constructing mecha-
nistic models for a vector-borne pathogen with a
multihost sylvatic cycle that is still being charac-
terized, coupled with a vector having a complex
life-history incorporating multiyear time delays.
West Nile virus exemplifies a different pattern, in
which low-level scientific interest suddenly surges
following incursions into new geographic territory
(wealthy nations in particular), and sporadic model-
ing efforts follow a few years later.

A sense of urgency and global risk motivates
the community to produce and publish dynamical
models quickly. Regrettably, for those zoonoses
largely restricted to developing countries, such as
trypanosomiasis (sleeping sickness), leishmaniasis,
and leptospirosis, neglect still applies (Table 1 and
fig. S1) despite their substantial public health
impacts. A further, essential factor is the existence
of good clinical and epidemiological data to con-
struct and validate models. Here we stress that
data must be made publicly available, preferably
in real time as occurred for SARS, to maximize
both the research opportunity and the resulting
public good of scientifically derived policy. The
early availability of genetic sequence data for the

current H1N1 influenza pandemic has been ex-
emplary in this regard, but unfortunately the cor-
responding epidemiological data have been less
systematically accessible.

Finally, a key determinant of modeling effort
is pathogen life history—in particular the extent
to which a pathogen matches the assumptions of
the basic SIR family of epidemic models. For in-
fections that are acute, symptomatic, and directly
transmitted, models can be constructed (and often
parameterized) by using “off-the-shelf” techniques,
greatly speeding the analysis of newly identified
disease threats and enabling extension of the
models to address more sophisticated questions.
Hence, an important priority for ongoing research
is to expand the class of pathogens for which there
are readily available modeling templates and ap-
plied examples of their connection to data sets,
beyond those that conform easily to the standard
SIR model.

The Way Forward: Crossing Species,
Crossing Disciplines
Significant shortfalls in dynamical studies of par-
ticular diseases, aswell as entire classes of zoonotic
pathogens (notably protozoan and vector-borne
infections), can be clearly discerned in the literature
(Table 1 and fig. S1). In contrast, some zoonoses,
such as influenza, SARS, and BSE, have acted as
crucibles for development of new methods for
understanding epidemiological complexities, par-
ticularly wherewell-resolved data are available. Un-
fortunately, even thesemodels have been restricted
in scope, and there is a need for new models that
integrate across phases of zoonotic dynamics and
that incorporate evolutionary, economic, andwithin-
host considerations.

An especially worrying gap is modeling of
spillover transmission from animals to humans.
The force of infection across species boundaries
can be broken into its constituent factors (Fig.
1B), including universal components such as the
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role of human susceptibility, risk behaviors, and
infection prevalence in the reservoir, as well as
particular details related to transmission routes
and pathogen-specific biology. Spillover risk also
can be influenced by dynamical phenomena: One
innovative study posits that epizootic peaks of
hantavirus in rodent reservoirs, with accompanying
spikes in numbers of newly infected rodents ex-
creting large quantities of virus, lead to high con-
centrations of virus in the environment and hence
an increased risk of human infection (48). Further
research will reveal whether such hypotheses may
hold true generally across zoonotic systems.

It is initially surprising that most of the best
models of spillover have been developed for the
more complex vector-borne and food-borne zoono-
ses, but this arises because the process of trans-
mission can often be observed directly in such
systems. Studies of vector-borne infections have
used quantitative frameworks to integrate data on
host competency, vector feeding preferences, and
environmental conditions to be able to estimate
spillover risk from different ecological pathways,
althoughwithout explicitly incorporating dynam-
ics (49). The food safety literature has treated the
risk of pathogens crossing from animal hosts to
human exposures in vivid mechanistic detail (50),
setting a high standard to be matched by disease
ecologists. For directly transmitted zoonoses, it is
straightforward to construct a basic model with
cross-species transmission (20), but it is very chal-
lenging to delve into underlying mechanisms and
estimate key parameters, particularly the cross-
species contact rate and the resulting probability
of infection, which typically arise from multiple
and largely unobserved ecological, behavioral,
and physiological factors. Research in this area is
clearly limited by available data from multiple host
species, but the plummeting cost of genetic se-
quencing brings exciting opportunities for mapping
cross-species transmission (51).

A second major gap lies in analysis of stutter-
ing chains of inefficient human-to-human transmis-
sion following spillover. Data from these settings
are dominated by stochastic effects and hetero-
geneities among hosts and environments, and anal-
ysis is complicated by the fundamental problem
of distinguishing between primary and secondary
cases. The central challenges in the study of stage
III zoonoses include quantifying the rate of human-
to-human transmission against a background of
spillover and monitoring for changes in pathogen
transmissibility that may represent steps toward
emergence of new stage IV pathogens (29).

The study of zoonotic dynamics offers a unique
window into fundamental questions of pathogen
ecology and evolution and provides vital insights

into public health issues. We need models to re-
veal the points of vulnerability where interven-
tion against zoonoses will be most effective and
to highlight the gaps in data collection. We need
to know when particular zoonotic phases, e.g.,
reservoir transmission, spillover from animals to
humans, stuttering transmission, or incipient out-
breaks among humans, can be targeted to optimize
epidemiological outcomes while reducing cost.
How should health policy be adapted to account
for environmental change or regional differences
in ecology and sociology? How might zoonotic
pathogens evolve in response to anthropogenic
forces or control strategies? Dynamical models,
rooted in data, provide an essential framework
for addressing these critical questions.
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Editor's Summary

 
 
 
complex, multihost life cycles are less well understood.
cycles and of immediate global urgency, such as influenza, whereas insect-transmitted pathogens with
from animals into humans. Moreover, the tendency has been to focus on pathogens with simpler life 
and research agendas. Significant gaps are highlighted in analytical efforts during spillover transmission
the use of analytical mathematical tools, particularly modeling, in the development of control policies 

 (p. 1362) reviewet al.Lloyd-Smith dynamics of circulation, transmission, and outbreak are complex. 
livestock and wildlife, as well as in humans. When a pathogen transfers among multiple hosts, the 

diseases that circulate in−−Influenza, plague, and Lyme disease are classic examples of zoonoses
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