CONTENTS

SPECIAL SECTION

Science, Language, and Literacy

INTRODUCTION
447 Learning to Read, Reading to Learn

PERSPECTIVES
448 Science Education and Literacy: Imperatives for the Developed and Developing World
P. Webb

450 Academic Language and the Challenge of Reading for Learning About Science
C. E. Snow

REVIEWS
453 Using Texts in Science Education: Cognitive Processes and Knowledge Representation
P. van den Broek

456 Supporting Students in Developing Literacy in Science
J. S. Krajcik and L. M. Sutherland

459 Literacy and Science: Each in the Service of the Other
P. D. Pearson et al.

463 Arguing to Learn in Science: The Role of Collaborative, Critical Discourse
J. Osborne

EDITORIAL
405 Prioritizing Science Education
Bruce Alberts

>> Science, Language, and Literacy section p. 447

NEWS OF THE WEEK
410 Iceland Eruptions Fuel Interest in Volcanic Gas Monitoring

413 Human Ancestor Caught in the Midst of a Makeover

414 Along With Power, Questions Flow at Laos’s New Dam

414 Max Planck Tests the Korean Waters

415 From the Science Policy Blog

416 Pioneering Geophysicist Tackles Newest Challenge

417 Congress Moves Toward Strengthening EPA’s Hand on Chemical Safety

NEWS FOCUS
418 A Groundbreaking Observatory to Monitor the Environment

>> Science Podcast

421 Imponderables Complicate Hunt for Intelligent Life Beyond Earth

422 A Sense of Crisis as China Confronts Ailments of Affluence

424 Unprecedented Excavation Brings Maritime Silk Road to Life

LETTERS
427 Unconventional Journals: Research Ramifications
G. N. Vyas

Unconventional Journals: Protect Nonconformists
O. S. Amit

Readers’ Poll: Unconventional Journals

>> Science, Language, and Literacy section p. 447

BOOKS ET AL.
430 Complexity
M. Mitchell, reviewed by I. D. Couzin

431 When Languages Die
K. D. Harrison, reviewed by A. Pires

EDUCATION FORUM
433 Assessing Literacy Across a Changing World
A. Schleicher

>> Science, Language, and Literacy section p. 447

CONTENTS continued >>

COVER
Children learning science, like these 7-year-olds tackling nuclear physics in 1948, must work through their mistakes and misconceptions. The route to science literacy involves reading, debate, presentation, and writing. See the special section beginning on page 447.

Photo: Nina Leen/Time Life Pictures/Getty Images

DEPARTMENTS
403 This Week in Science
406 Editors’ Choice
408 Science Staff
409 Random Samples
515 New Products
516 Science Careers

www.sciencemag.org SCIENCE VOL 328 23 APRIL 2010
Published by AAAS
PERSPECTIVES
435 Escaping Attention
T. Grüter and C.-C. Carbon

436 Syntheses That Stay Together
J. W. Roberts
>> Reports pp. 501 and 504

437 Toward Understanding and Predicting Monsoon Patterns
E. R. Wahl and C. Morrill
>> Report p. 486

439 Salmonella Susceptibility
S. Moir and A. S. Fauci
>> Report p. 508

440 The Case for Plasmonics
M. L. Brongersma and V. M. Shalaev

441 Sign Flips and Spin Fluctuations in Iron High-Tc Superconductors
J. E. Hoffman
>> Report p. 474

443 People, Societies, and Landscapes
C. French

BREVIA
469 Genotype to Phenotype: A Complex Problem
R. D. Dowell et al.
in yeast, the impact of gene knockouts depends on genetic background.

RESEARCH ARTICLE
470 Molecular Basis of Alternating Access Membrane Transport by the Sodium-Hydantoin Transporter Mhp1
T. Shimamura et al.
Three complementary crystal structures reveal the mechanism of a transport protein in molecular dynamics simulations.

REPORTS
474 Unconventional s-Wave Superconductivity in Fe(Se,Te)
T. Hanaguri et al.
The electronic gap in an iron-based superconductor has spherically symmetric components that change sign.
>> Perspective p. 441

476 Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocations
S. A. Morin et al.
Low supersaturated conditions help control the growth of zinc oxide nanowires and nanotubes from defect sites.

480 Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors
J. Chmiola et al.
The power density of small-scale capacitors can be increased by using monolithic carbon films.

483 Constraints on the Formation Age of Cometary Material from the NASA Stardust Mission
J. E. P. Matzel et al.
Transport of inner solar system material to the Kuiper Belt and incorporation into comets took at least 2 million years.

486 Asian Monsoon Failure and Megadrought During the Last Millennium
E. R. Cook et al.
Tree-ring data from more than 300 locations provide a 700-year-long record of monsoon variability throughout Asia.
>> Perspective p. 437; Science Podcast

490 Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes
C. J. Poulsen et al.
Increased precipitation, rather than rapid uplift, drove isotopic changes in soil carbonates of the Andes in the late Miocene.

494 Complexity and Diversity
M. Doebeli and I. Ispolatov
Eco-evolutionary models of selection acting on multiple traits show how rare alleles can establish and drive speciation.

501 Stoichiometry and Architecture of Active DNA Replication Machinery in Escherichia coli
R. Reyes-Lamothe et al.
Single-molecule fluorescence microscopy reveals the organization of the replisome in living bacterial cells.

504 Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation
S. Proshkin et al.
The ribosome pushes RNA polymerase to prevent backtracking, which links rates of translation with transcription.
>> Perspective p. 436

508 Dysregulated Humoral Immunity to Nontyphoidal Salmonella in HIV-Infected African Adults
C. A. MacLennan et al.
Abnormal antibody responses produced in HIV-infected individuals are ineffective at clearing food-poisoning bacteria.
>> Perspective p. 439

512 Teacher Quality Moderates the Genetic Effects on Early Reading
J. Taylor et al.
Good teachers allow children to achieve their genetic potential; poor teachers do not.
>> Science, Language, and Literacy section p. 447; Science Podcast

CONTENTS continued >>

www.sciencemag.org SCIENCE VOL 328 23 APRIL 2010
Published by AAAS
Small Silencing RNAs in Plants Are Mobile and Direct Epigenetic Modification in Recipient Cells
A. Molnar et al.

A molecular glass can be patterned to dimensions of tens of nanometers with a heated scanning probe tip. 10.1126/science.1187851

Integration of drug and protein interaction data with genetic data enables the prediction of adverse drug effects.

CREDIT: MYKL ROVENTINE/CREATIVE COMMONS

Small RNA Duplexes Function as Mobile Silencing Signals Between Plant Cells
P. Dunoyer et al.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation. 10.1126/science.1185880

The Onset of Collective Behavior in Social Amoebae
T.Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses. 10.1126/science.1188222

Neural Crest–Derived Pericytes Promote Egress of Mature Thymocytes at the Corticomedullary Junction
M. A. Zachariah and J. G. Cyster

Cells that ensheathe blood vessels promote the exit of the developing T lymphocytes from the thymus. 10.1126/science.1189224

The development of technologies that can encode video information using monophosphate pulses.

Stochastic pulsing of individual cells plays a role in the development of T lymphocytes from the thymus.

The Onset of Collective Behavior in Social Amoebae
T. Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.

Small Silencing RNAs in Plants Are Mobile and Direct Epigenetic Modification in Recipient Cells
A. Molnar et al.

A molecular glass can be patterned to dimensions of tens of nanometers with a heated scanning probe tip.

CREDIT: MYKL ROVENTINE/CREATIVE COMMONS

Small RNA Duplexes Function as Mobile Silencing Signals Between Plant Cells
P. Dunoyer et al.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.

The Onset of Collective Behavior in Social Amoebae
T. Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.

The Onset of Collective Behavior in Social Amoebae
T. Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.

The Onset of Collective Behavior in Social Amoebae
T. Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.

The Onset of Collective Behavior in Social Amoebae
T. Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.

The Onset of Collective Behavior in Social Amoebae
T. Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.

The Onset of Collective Behavior in Social Amoebae
T. Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.

The Onset of Collective Behavior in Social Amoebae
T. Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.

The Onset of Collective Behavior in Social Amoebae
T. Gregor et al.

Stochastic pulsing of individual cells plays a critical role in initiating cyclic adenosine monophosphate pulses.

Small double-stranded interfering RNAs move between cells and can direct DNA methylation.