CONTENTS

EDITORIAL
884 Nurturing Young Scientists
James Gentile and Sherwood Boehlert
>> Education Forum p. 906

NEWS OF THE WEEK
888 After Outcry, Oil Data Inches Into the Open
888 The Case of the Missing $470 Million in BP’s Promised Research Fund
890 From the Science Policy Blog
890 Investigation Leaves Field in the Dark About a Colleague’s Work
891 From Science’s Online Daily News Site
892 One-Two Punch Elevates Rats to the Knockout Ranks
893 Senator Builds His Legacy With University of Alabama Earmarks
894 U.S. Astronomers Unveil Stripped-Down ‘Short List’

NEWS FOCUS
896 Free Journals Grow Amid Ongoing Debate
>> Science Podcast
899 Pavlovsk’s Hopes Hang on a Tweet

LETTERS
900 Local Programs Take a Bite Out of Malaria
C. J. Shiff and P. Thuma
National Indicators Show Biodiversity Progress
H. Xu et al.
Response
S. H. M. Butchart et al.
Putting Census Data to Work
T. D. Brewer
Life in Science: Up a Creek in Indonesia
B. M. Beehler
902 TECHNICAL COMMENT ABSTRACTS

BOOKS ET AL.
904 The Plundered Planet
P. Collier, reviewed by B. S. Low
905 Close Examination
M. E. Wieseman and A. Roy, curators;
A Closer Look
M. E. Wieseman, reviewed by P. Fara

EDUCATION FORUM
906 Partnerships for STEM Education
K. M. Foster et al.
>> Editorial p. 884

PERSPECTIVES
908 A Tale of Two Jets
N. Yunes
>> Report p. 927
909 Nuclei Get TAN Lines
D. A. Starr
>> Report p. 956
910 Directing Light Emission from Quantum Dots
H. Giessen and M. Lippitz
>> Report p. 930
911 Replication Error Amplified
S. Kaochar et al.
>> Report p. 943
913 A Glutamate Pathway to Faster-Acting Antidepressants?
J. F. Cryan and O. F. O’Leary
>> Report p. 959
914 Double TIP-ping
H. Singh and I. A. Demarco
>> Research Article p. 917

BREVIA
916 Land-Level Changes Produced by the Mw 8.8 2010 Chilean Earthquake
M. Farias et al.
The 2010 Mw 8.8 Chilean earthquake ruptured ~500 kilometers and vertically displaced over 3 meters.

CONTENTS continued >>

COVER
Immuno–electron micrograph of a plastid-dividing ring (diameter ~500 nm), a structure required for chloroplast division, isolated from the unicellular alga Cyanidioschyzon merolae. Immunogold particles (black dots) indicate localization of the glycosyltransferase protein PDR1 (protein dividing ring 1), which forms a ring with carbohydrates that constricts to physically divide the chloroplast. See page 949.

Image: Yamato Yoshida, Haruko Kuroiwa, Tsuneyoshi Kuroiwa/Research Information Center for Extremophile, Rikkyo University, Tokyo, Japan

www.sciencemag.org SCIENCE VOL 329 20 AUGUST 2010 879

Downloaded from http://science.sciencemag.org/ on April 8, 2017
RESEARCH ARTICLE
917 PTIP Promotes Chromatin Changes Critical for Immunoglobulin Class Switch Recombination
J. A. Daniel et al.
A factor that regulates chromatin accessibility and recombination during immunoglobulin rearrangements is identified.
>> Perspective p. 914

REPORTS
924 Cosmological Constraints from Strong Gravitational Lensing in Clusters of Galaxies
E. Jullo et al.
Light from distant sources bends around massive intervening objects and helps to reveal the properties of dark energy.
>> Perspective p. 908
927 Dual Jets from Binary Black Holes
C. Palenzuela et al.
Simulations show that merging black holes may produce a detectable electromagnetic signature.
>> Perspective p. 910
930 Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna
A. G. Curtu et al.
An antenna designed for optical wavelengths is used to control the direction of the light emitted from a quantum dot.
>> Perspective p. 910
933 Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding
J. A. Farmer and C. T. Campbell
The stability of cerium oxide surfaces allows deposited silver nanoparticles to maintain a small size distribution.
>> Perspective p. 909
936 Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera
T. R. Waters et al.
The relatively young age of the faults and their distribution suggest global, late-stage contraction of the Moon.
>> Perspective p. 913; Science Podcast
940 Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009
M. Zhao and S. W. Running
Terrestrial biomass declined during the hot past decade, reversing the trend of the previous 20 years.
>> Perspective p. 911
943 Loss of DNA Replication Control Is a Potent Inducer of Gene Amplification
B. M. Green et al.
Re-replication of DNA and homologous recombination between repetitive elements can cause genome instability.
946 The Legionella Effector Protein DrrA AMPylates the Membrane Traffic Regulator Rab1b
M. P. Müller et al.
An intracellular bacterial pathogen interferes with host cell membrane trafficking.
949 Chloroplasts Divide by Contraction of a Bundle of Nanofilaments Consisting of Polyglucan
Y. Yoshida et al.
Enzymatic transfer of simple sugars is essential for the formation of the chloroplast-division machinery.
953 Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants
R. de Jonge et al.
A fungal protein binds to a host cell wall component to allow the fungus to escape immune responses.
956 Linear Arrays of Nuclear Envelope Proteins Harness Retrograde Actin Flow for Nuclear Movement
G. W. G. Luxton et al.
An actin-dependent mechanism is involved in moving nuclei so that they are properly positioned for cell migration.
>> Perspective p. 913
959 mTOR-Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists
N. Li et al.
Ketamine, an anaesthetic and recreational drug, rapidly increases synaptic signaling and antidepressant behavioral responses.
964 Females Use Multiple Mating and Genetically Loaded Sperm Competition to Target Compatible Genes
S. R. Pryke et al.
Female birds that have multiple mates favor fertilization by the most genetically compatible father.
967 Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy
N. Olivier et al.
Time-lapse recording characterizes the rhythm and cleavage pattern of the embryo during early stages of development.
mammoth eruptions and mass extinctions. New research questions the link between ‘Killer’ Volcanoes Not Guilty how fast the heart beats. Pulses of light allow researchers to change Lasers Set Hearts Aflutter Could Improve Aircraft Safety Lessons From Skipping Stones

www.sciencemag.org

SCIENCE --- VOL 329 --- 20 AUGUST 2010

SCIENCEONLINE

SCIENCEEXPRESS
www.sciencexpress.org

Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon R. Camilli et al. In late June 2010, the Deepwater Horizon oil plume stretched more than 35 kilometers at a depth of 1100 meters. 10.1126/science.1195223 >> Science Podcast

Plastic Accumulation in the North Atlantic Subtropical Gyre K. L. Law et al. The amount of plastic debris in the surface waters of the western North Atlantic Ocean has plateaued over the past 22 years. 10.1126/science.1192321

A Red-Shifted Chlorophyll M. Chen et al. A natural chlorophyll is found to absorb further in the infrared than other light-harvesting chromophores in its class. 10.1126/science.1191127

A Vibrio Effector Protein Is an Inositol Phosphatase and Disrupts Host Cell Membrane Integrity C. A. Broberg et al. Altering the homeostasis of membrane-bounded signaling molecules allows a bacterial pathogen to corrupt cell function. 10.1126/science.1192850

A Unifying Genetic Model for Facioscapulohumeral Muscular Dystrophy R. J. L. F. Lemmers et al. Sequence variants shared by patients with a genetically complex form of muscular dystrophy explain how the disease arises. 10.1126/science.1189044

TECHNICAL COMMENTS

Comment on “The Silicate-Mediated Formose Reaction: Bottom-Up Synthesis of Sugar Silicates” H.-J. Kim and S. A. Benner Full text at www.sciencemag.org/cgi/content/full/329/5994/902-a

Response to Comment on “The Silicate-Mediated Formose Reaction: Bottom-Up Synthesis of Sugar Silicates” J. B. Lambert et al. Full text at www.sciencemag.org/cgi/content/full/329/5994/902-b

SCIENCE NOW

www.sciencenow.org

Highlights From Our Daily News Coverage

Lessons From Skipping Stones Could Improve Aircraft Safety Researchers develop a model that reveals what happens when a stone skips across the water. Lasers Set Hearts Aflutter Pulses of light allow researchers to change how fast the heart beats. ‘Killer’ Volcanoes Not Guilty New research questions the link between mammoth eruptions and mass extinctions.

SCIENCE SIGNALING

www.sciencesignaling.org

The Signal Transduction Knowledge Environment

RESEARCH ARTICLE: TPL-2–Mediated Activation of MAPK Downstream of TLR4 Signaling Is Coupled to Arginine Availability V. Mieulet et al.

RESEARCH ARTICLE: Arginine Usage in Mycobacteria-Infected Macrophages Depends on Autocrine-Paracrine Cytokine Signaling J. E. Qualls et al.

PERSPECTIVE: Arginine—Master and Commander in Innate Immune Responses S. M. Morris Jr. In addition to acting as an enzyme substrate, arginine functions as a regulatory molecule in immune cells.

REVIEW: Phosphoinositide 3-Kinase Signaling in Thymocytes—The Need for Stringent Control E. Fayard et al. PI3K signaling is important in the development of normal and malignant thymocytes.

GLOSSARY
Find out what AER, AGC, and COS mean in the world of cell signaling.

SCIENCE CAREERS

www.sciencemag.org/career_magazine

Free Career Resources for Scientists

A Cosmologist Resists Academia’s Work-Life Norms S. Reed Sarah Bridle has carved out a successful career while resisting long hours and personal sacrifices.

SCIENCE TRANSLATIONAL MEDICINE

www.sciencetranslationalmedicine.org

Integrating Medicine and Science

COMMENTARY: 360 Degrees of Human Subjects Protections in Community-Engaged Research L. F. Ross When communities are both participants and partners in research, effective human subjects protections must address both individual and group risks.

RESEARCH ARTICLE: The Four-Herb Chinese Medicine PHY906 Reduces Chemotherapy-Induced Gastrointestinal Toxicity W. Lam et al.

PERSPECTIVE: Are Herbal Medicines Ripe for the Cancer Clinic? C. Eng

PODCAST Y.-C. Cheng and A. M. Van Hook A traditional Chinese medicine reduces the intestinal toxicity of chemotherapy by inhibiting inflammation and promoting cell proliferation.

RESEARCH ARTICLE: Multivalent Integrin-Specific Ligands Enhance Tissue Healing and Biomaterial Integration T. A. Petrie et al. Titanium implants coated with nanoclustered integrin are tightly integrated into bone for orthopedic applications.

SCIENCE PODCAST

www.sciencemag.org/multimedia/podcast

Free Weekly Show Download the 20 August Science Podcast to hear about tracking a subsurface oil plume from the Gulf spill, a fast-acting antidepressant, a decade of open-access publication, and more.

SCIENCE INSIDER

news.sciencemag.org/scienceinsider

Science Policy News and Analysis

Glossary: PLC, Phospholipase C; PI3K, Phosphoinositide 3-Kinase; IRS, Insulin Receptor Substrate; PI-P3, Phosphatidylinositol 3,4,5-Trisphosphate; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PIP2, Phosphatidylinositol 4,5-Bisphosphate; PIP3, Phosphatidylinositol 3,4,5-Trisphosphate; PIP1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphatidylinositol 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinositol 3-Phosphate; PI3K, Phosphoinositide 3-Kinase; PLC, Phospholipase C; PLA2, Phospholipase A2; PLB, Phospholipase B; PI-P2, Phosphatidylinositol 3,4-Bisphosphate; PI-P1, Phosphatidylinosito...
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/329/5994

Permissions Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl