Disgraced, Dismissed, But Still Herr Doktor

Jan Hendrik Schön may have ruined his scientific career, but he can keep his doctorate, a judge in Freiburg, Germany, decided last week. In 2002, the physicist touched off one of the biggest scandals to rock physics when it became clear that he had fabricated data in at least 17 papers on the electronic properties of organic materials (*Science*, 4 October 2002, p. 30). After being fired from his job at Lucent Technologies’ Bell Laboratories in Murray Hill, New Jersey, he disappeared from public view.

In 2004, the physics department’s doctoral committee at his alma mater, the University of Konstanz, asked Schön to return his doctoral certificate, citing a law that allows universities to rescind degrees when the recipient acts dishonorably, says university rector Ulrich Rüdiger. Schön filed an objection and last year sued the university. The judge in the case has now ruled that because Schön’s misconduct wasn’t related to his degree, the university can’t take back his title.

“Scientific misconduct is a bit like doping in sports,” Rüdiger says. “You can ban them from competition, but there are few legal penal-

Q: Why jellyfish?
What I’m primarily interested in is the fact that they’re so simple. Other, higher organisms have greater neural capacity. These are quite simple, but by using fluid mechanics they’re able to achieve complex behaviors. We’ve been looking at vortex rings, which are like smoke rings you’d blow with a cigar. It turns out that by creating those rings they’re able to move through the water more efficiently than they otherwise could.

Q: What can studying them tell us about the heart?
Not all jellyfish are created equal. Some are highly efficient; some are fast but less efficient. … These properties show up in the types of rings they form. Similarly, we can look at the flow in the left ventricle in the heart, which also forms these vortex rings, and correlate shape and size to various performance levels in the heart.

Q: Any plans yet for the money?
I’m going to take swimming lessons. We go into the ocean … and use combinations of different laser techniques … to infer the water motion and measure the velocity and forces being generated. … Since I never learned how to swim, the students and postdocs are the ones who take the measurements in the water. … I’d like to join them.

WHAT, US BITTER?

A nice piece of dark chocolate might sound tempting, but for many people in the Pamir Mountains in central Asia, the bittersweet candy would hardly be a treat.

That is one of the findings to emerge from an expedition by Italian scientists who followed in the footsteps of 13th century Venetian merchant Marco Polo along the ancient trading route known as the Silk Road. From July to September, they traveled more than 14,000 km from Trieste in Italy to Shanghai in China, hitting Georgia, Azerbaijan, Turkmenistan, Uzbekistan, Tajikistan, and Kazakhstan. Along the way, the team tested the reactions of more than 700 people to bitterness and saltiness, asked about their food preferences, took saliva samples, and tested their sense of smell and color.

The idea is to understand better how our genes—even those not directly tied to taste receptors—might influence what we like to eat, says Paolo Gasparini, a geneticist at the Burlo Garofolo Hospital in Trieste.

In the Pamir region, the team found that some 37% of people are “supertasters” extremely sensitive to bitter tastes, compared with 7% to 15% in most European countries. Indeed, a regional specialty is dried-apricot soup, which to a Westerner might sound more like dessert.