What's the best way to accelerate my stem cell research?

With a head start! Our targeted regulators, antibodies and kits will give you an edge over the competition... and your research will progress swimmingly.

That's what's in it for you. EMD Chemicals

View our current offering of stem cell research related products and review articles on stem cell signaling pathways at www.emdbiosciences.com/StemCells.

NEW StemSelect™ Small Molecule Regulators 384-Well Library I now available!
For details, visit www.emdbiosciences.com/StemSelect.

See reverse for more information ➤
Pioneering Stem Cell Research Products

Give your stem cell research a head start with your leading supplier of Calbiochem® small molecule regulators

For decades, EMD Chemicals has been your trusted source of inhibitors, biochemicals, antibodies, proteins, and kits that have been cited in thousands of peer-reviewed publications. In our continued endeavor to be your trusted source of reliable products, our highly trained scientists make every effort to review the latest developments in stem cell research and to provide you with targeted reagents and kits necessary to help you jump-start your research.

Trusted source of small molecule regulators
Get reliable results the first time and every time with tried and trusted reagents

Expert selection of stem cell products
Get a head start on stem cell research with products selected by experts

Industry leading technical support
Obtain accurate and on-time answers from highly trained technical support staff

Head start your Stem Cell research by visiting our website...

www.emdbiosciences.com/StemCells

Get the Edge on Stem Cell Research with Calbiochem® Small Molecule Regulators

Effective Screening of Inhibitors for Influence on Proliferation and Survival of Mouse Neural Stem Cells

Mouse Neural Stem Cell Viability

InhibitorSelect™ 96-Well Protein Kinase Inhibitor Libraries I & II (160 inhibitors; Cat. No. 539744 and 539745) were screened for influence on proliferation and survival of mouse neural stem cells (mNS) in an ATP bioluminescence cell viability assay. mNS cells were plated at 3,000 cells/well and viability assay performed after 2 days of incubation. Each compound was tested in each of four growth factor backgrounds:

(A) No GFs – No Growth Factors (to identify survival/proliferation factors)
(B) Sub EGF – Sub-optimal EGF (to identify inhibitors/potentiators) 20pg/ml EGF
(C) Sub FGF2 – Sub-optimal FGF2 (to identify inhibitors/potentiators) 500pg/ml FGF2
(D) Max GFs – Maximal EGF + FGF2 (to identify inhibitors/potentiators) 20ng/ml EGF + 20ng/mL FGF2

Results for 20 inhibitors are presented as mean data (of n=4 wells per condition) with error bars indicating standard error of the mean (SEM). The presence of inhibitor K-252a, *Nocardiopsis* sp. (Cat. No. 420297) alone in the culture media resulted in a 10-fold mNS cell viability.

Data courtesy of Donna McLaren, Stem Cell Sciences, Cambridge, UK
cell sciences®

Buy two - Get three!

Buy two recombinant proteins and get an additional protein free for a limited time on any of our popular items listed below. Mention offer code RP342 when ordering. Visit www.cellsciences.com for details.

Recombinant human proteins
- BD1 (47 aa) IL6
- BD2 IL8 (72 aa)
- BD3 IL8 (77 aa)
- BD4 IL10
- BLC/BCA1/CXCL13 IL11
- BMP2 IL12
- BMP4 IL13
- CCL14 IL15
- CD40 Ligand IL17
- CNTF IL21
- CXCL1 IL31
- CXCL10/IP10 IL33
- CXCL11/I-TAC LEC
- CXCL2 MCP1
- CXCL3/MIP2 beta MCP2
- EGF MCP4
- ENA78/CXCL5 M-CSF
- Eotaxin MEC/CCL28
- Eotaxin-2 MIA-2
- Exodus-2 MICA
- FGF1 (aa 141) MIF
- FGF7 MIG
- FGF10/KGF2 MIP-1 alpha
- FLT3 Ligand MIP-1 beta
- Fractalkine MIP-3 alpha/CCL20
- GCSF MIP-3/CCL23
- GH1 MIP-4/CCL18
- GM-CSF MIP-5/CCL15
- IFN alpha 2b NAP-2/CXCL7
- IFN beta 1b Noggin
- IFN gamma NRG1
- IGF1 NT4
- IGFBP3 RANTES
- IL1 alpha SCF
- IL1 beta SDF-1 alpha
- IL1RA TARC/CCL17
- IL2 TNF alpha
- IL3 TPO
- IL4 VEGF

Recombinant mouse proteins
- CXCL2
- CXCL16
- EGF
- FGF2
- GM-CSF
- IFN gamma
- IL2
- IL3
- IL4
- IL11
- IL33
- LIX/CXCL5
- MCP2
- Noggin
- SDF-1 beta
- SF20
- TNF alpha
- VEGF

Recombinant rat proteins
- EGF
- FGF2
- IFN gamma
- SDF-1a/CXCL12
- SDF-1b/CXCL12

Other recombinant proteins
- Protein A/G
- Staphylokinase
- Streptokinase

Offer good for any combination of three items on the list above. Products are for research use only. Not for human use. Not for use in diagnostic or therapeutic procedures.
Drop. Measure. Done.

NanoVue™ Plus: intelligent performance across all spectrophotometer applications

It’s all the convenience you want in a spectrophotometer, packaged in a portable, ergonomic device. NanoVue Plus features a new hydrophobic, gold-colored sample plate coating that delivers outstanding results for sub-microliter amounts of proteins and nucleic acids. It operates without a PC and does not require time-consuming third-party path length recalibration.

NanoVue Plus enables easy protocol selection using advanced software that includes intuitive drop-down lists for the full range of CyDye™ fluorescent dyes, as well as lists for common fluors. Results can be exported using a USB cable or Bluetooth™ connections for print via computer (PVC) or stored using the new SD card option. An integrated printer is also available.

• Swift, accurate analysis of 0.5 µl samples of nucleic acids and proteins
• Practical drop and measure mechanism
• Outstanding sample recovery
• Reliable and reproducible measurements
• Automatic self-calibration on start up
• Path length recalibration kit available as accessory

Experience the NanoVue Plus first hand. Register for a trial at:
www.gelifesciences.com/tryNanoVuePlus
Any sample, any application — no limits

Maximize success
with QIAGEN sample technologies

- Innovative, room-temperature sample collection and stabilization
- DNA, RNA, and protein purification from any sample
- Hands-free automated sample preparation
- Reliable genetic, epigenetic, and gene expression analysis from FFPE samples
- Whole genome and transcriptome amplification to overcome sample limitations

Contact QIAGEN today or visit www.qiagen.com/sample-technologies
Imagine if Otto Warburg had a Seahorse XF Extracellular Flux Analyzer...

Finally, a real-time, kinetic measurement of the Warburg Effect, glucose & glutamine addictions, and fatty acid oxidation of cancer cells in a microplate.

Seahorse's award winning XF Extracellular Flux Analyzers provide an easy way to:

- Evaluate the role of oncogenes and tumor suppressor genes in energy metabolism and tumorigenesis
- Detect HIF-1 and drug mediated effects on mitochondrial respiration and glycolysis
- Determine which energy substrates are preferentially used by tumor cells
- Measure the dynamic contributions of OXPHOS & aerobic glycolysis
- Validate genes that target tumor metabolism

Measuring cancer metabolism is so easy now!
New tools to advance epigenetics research

For over 35 years, New England Biolabs has been committed to understanding the mechanisms of restriction and methylation of DNA. This expertise in enzymology has recently led to the development of a suite of validated products for epigenetics research. These unique solutions to study DNA methylation are designed to address some of the challenges of the current methods. EpiMark™ validated reagents simplify epigenetics research and expand the potential for biomarker discovery.

EpiMark™ validated products include:
- Newly discovered methylation-dependent restriction enzymes
- A novel kit for 5-hmC and 5-mC analysis and quantitation
- Methyltransferases
- Histones
- Genomic DNAs

To learn how these products can help you to better understand epigenetic changes, visit neb.com/epigenetics.
What color will help you today?

Abcam offers hundreds of DyLight® conjugated secondary antibodies that complement our products in a wide range of applications.

- Bright fluorescence
- Excellent photostability
- Stable at pH4 - 9
- Pre-adsorbed formats

For all your secondary antibody needs visit: www.abcam.com/secondary_antibody

DyLight® is a trademark of Thermo Fisher Scientific Inc. and its subsidiaries.

Emission spectra of DyLight® fluorochromes.
Line colors represent the approximate visible colors of the wavelength maxima.

Abcam Inc.
1 Kendall Square, Ste 341
Cambridge, MA 02139-1517
USA

Tel: 1-617-225-2272
Toll free: 1-888-77-ABCAM
Toll free Fax: 1-866-739-9884

www.abcam.com
Your responsive CRO partner, delivering customized solutions and adaptability to changing needs.

MPI Research is the CRO that defines responsiveness, moving your drug development program forward with customized solutions for all your preclinical research. From discovery services to safety evaluation, including analytical and bioanalytical support, you can count on MPI Research for quick quotes, frequent updates, rapid turnaround, and scientific rigor. At every stage, and on every level, we adapt to your most exacting needs.

Explore the breadth of capabilities that make us your responsive CRO at www.MPIResearch.com.
Catch the Latest Buzz...

Empowering graduate students and post docs

Present and discuss your work with a small group of peers and mentors in a relaxed and engaging atmosphere. Each seminar is held immediately prior to a related Gordon Research Conference.

CAG Triplet Repeat Disorders
June 4-5, 2011
Lucca (Barga), Italy

Cannabinoid Function in the CNS
Dysregulation of the Endocannabinoid System and Ensuing Pathological States
May 21-22, 2011
Les Diablerets, Switzerland

Cell Biology of Megakaryocytes & Platelets
Establishing a Research Career in Platelet Biology and Hemostasis/Thrombosis
March 19-20, 2011
Galveston, TX

Chemical & Biological Terrorism Defense
Research Frontiers in Chemical and Biological Defense
March 19-20, 2011
Ventura, CA

Dendrites: Molecules, Structure & Function
March 12-13, 2011
Ventura, CA

Fibronectin, Integrins & Related Molecules
Dynamics of Integrin Adhesion and Signaling
April 30 - May 1, 2011
Lucca (Barga), Italy

Interior of the Earth
June 4-5, 2011
South Hadley, MA

Macromolecular Materials
Macromolecular Innovation for Sustainability and Materials Performance
January 8-9, 2011
Ventura, CA

Molecular Pharmacology
January 8-9, 2011
Ventura, CA

Oxidative Stress & Disease
Common “Threads” in Oxidative Stress-Mediated Diseases
March 12-13, 2011
Ventura, CA

Physical Virology
January 15-16, 2011
Ventura, CA

Polar Marine Science
Contributing to the Understanding of Complex Polar Marine Systems
March 19-20, 2011
Ventura, CA

Renewable Energy: Solar Fuels
January 15-16, 2011
Ventura, CA

RNA Editing
Editing and Modification of RNA and DNA
January 8-9, 2011
Galveston, TX

Tissue Repair & Regeneration
June 4-5, 2011
New London, NH
And the 2010 winner is...

Christopher Gregg, Ph.D.
Postdoctoral Fellow
Harvard University

Get recognized!
US$ 25,000 Prize

Learn more at
www.eppendorf.com/prize

Congratulations to Christopher Gregg on winning the 2010 Eppendorf & Science Prize for his studies on genes that alter their expression in the brains of offspring according to whether they were inherited from the father versus the mother. His findings suggest new pathways that may help to understand brain diseases such as autism, schizophrenia and eating disorders.

The annual US$ 25,000 Eppendorf & Science Prize for Neurobiology honors young scientists, like Dr. Gregg, for their outstanding contributions to neurobiology research. Dr. Gregg is the ninth recipient of this prestigious award. He will be honored at a ceremony held during the week of the 2010 Annual Meeting of the Society for Neuroscience.

You could be next.
If you are 35 years of age or younger and currently performing neurobiology research, you could be next to win the 2011 Prize. Deadline for entries is June 15, 2011.
Emotional reactions to instrumentation from scientists are rare. Yet with Thermo Scientific NanoDrop Spectrophotometers, they are becoming commonplace. That’s because scientists who own a NanoDrop™ are passionate about its simplicity. These instruments reduce analysis time and minimize sample waste with fast, easy and accurate micro-volume nucleic acid and protein sample quantitation. Just ask Dr. Ismail:

“With NanoDrop I can measure labeled proteins with different fluorophores at different wavelengths. I don’t have to dilute samples, so I don’t introduce errors in my measurements. NanoDrop gives me higher accuracy. It’s convenient, fast and simple.”

Learn about our special offers including a FREE tee-shirt promotion
www.thermoscientific.com/nanodrop

Thermo Scientific NanoDrop UV-Vis Spectrophotometers offer easy, reliable micro-volume analysis, with sample size as low as 0.5 μl and measurement time of less than 5 seconds—no dilutions.
MPC-200
Multi-manipulator system

Versatile: User friendly interface controls up to two manipulators with one controller. Select components to tailor a system to fit your needs.

Expandable: Daisy chain a second controller and operate up to four manipulators with one input device.

Stable: Stepper motors and cross-rolled bearings guarantee reliable, drift-free stability.

Doubly Quiet: Linear stepper-motor drive reduces electrical noise. Thermostatically-controlled cooling fans barely whisper.

Make the right move!

SUTTER INSTRUMENT
PHONE: 415.883.0128 | FAX: 415.883.0572
EMAIL: INFO@SUTTER.COM | WWW.SUTTER.COM

NEW Technology Feature!

Read the article in this issue on page 853.

Ebb and Flow: CYTOMETRY for the next generation

Flow cytometry technologies have been rapidly advancing, becoming more portable as devices decrease in size and now offering enhanced cell sorting capabilities with an ever increasing number of fluorescent colors and lasers available for cell detection. The recent combination of cell tagging technology with metals and microscopy has opened the way for potential new uses of flow cytometry devices, which are now being applied in most fields of biology, from botany and stem cells topathology and cell signaling.

View online at www.sciencemag.org/products/articles.dtl

Produced by the Science/AAAS Business Office
The new line of easyCyte™ single-sample flow cytometry instruments provide all the advantages and quality of the Millipore guava® solution in an affordable single-sample device. With up to 8 parameters and 2 lasers, more analytical power, better quality data, validated reagents and full service support—one would expect to pay more!

With the new easyCyte single-sample solution, more = less.
EBB AND FLOW:
Cytometry For The Next Generation

Think there’s nothing new in the world of flow cytometry? Think again. As industry powerhouses like BD Biosciences and Beckman Coulter continually redefine the technology’s bleeding edge, upstarts have emerged with innovative technologies of their own. And not only upstarts. No less a corporate brand than Sony entered the fray this past February with the purchase of flow cytometry firm iCyt. As Richard Konz, director of the University of Massachusetts Medical School Flow Cytometry Core Facility, explains, the technology has shaken off its immunology roots to become a multidisciplinary tool. “Literally every department is using flow for something, and that for me is very exciting,” Konz says. “It’s basically never a dull moment.”

By Jeffrey M. Perkel

“But it isn’t penguins that take Ducklow so far from home. Ducklow is a marine ecologist who studies what he calls “microbial oceanography” in the waters off the West Antarctic peninsula. Basically, he and his team study the microbial food web, the bacteria, protozoa, and phytoplankton that help sustain and define the biology of the oceans. Their job: to collect samples, take a microbial census, and assess some basic biology—how many are alive, how many are motile, and how many are “grazers” that ingest other organisms, for instance.

In past years, his team has collected samples, preserved them, and shipped them back to Massachusetts for analysis, but that approach, he says, was unacceptable; preservation, shipping, and storage conspire to damage the samples and introduce artifacts. But for six weeks in January and February 2010, during the southern summer, he and his team employed a different technology.

As detailed in an abstract presented at the June 2010 meeting of the American Society for Limnology and Oceanography in Santa Fe, Ducklow and his team took a two-laser, four-color Accuri C6 flow cytometer to Antarctica for “Shipboard, near-real-time enumeration of living phytoplankton and bacteria along the West Antarctic Peninsula.”

Though others have taken flow cytometers to sea before—marine biology is something of a niche application for the devices—Ducklow’s was “the first group to have a flow cytometer that far south,” he says. The ocean simply isn’t the best environment for flow cytometry; most flow cytometers are large, temperamental, power-hungry beasts. The compact, low-power, easy-to-operate C6, Ducklow says, “has revolutionized our research.” (How compact? Weighing in at just 13.6 kg the C6, says Richard Konz, is “the size of four shoeboxes put together.”)

Flow cytometry is undergoing something of a revolution too. Once the province of immunologists bent on enumerating blood cell populations by their surface markers, the technology now is being applied across all facets of biology, from botany and stem cells to pathology and cell signaling. “It’s a phenomenal tool,” says Steve McClellan, Senior Biological Scientist in the Flow Cytometry Core Laboratories at the University of Florida. “There’s hardly anything you cannot use flow for.”

GUMMING UP THE WORKS

In flow cytometry, a flowing stream of cells is focused into single-cell, usually by injection into a fast flowing river of sheath fluid—a process called hydrodynamic focusing. (Not everyone uses that approach. EMD Millipore’s EasyCyte cytometers employ silica microcapillaries instead of sheath fluid (Millipore was acquired earlier in 2010 by Merck KGaA). And Life Technologies’ Attune system focuses cells using sound energy; by focusing the cells before they reach the sheath fluid, says Flow Cytometry Systems Business director Mike Olszowy, the system can push cells into the system faster without losing focus, speeding analyses up to 16-fold over conventional approaches.) The cells then pass one or more lasers, which interrogate the cells by exciting attached fluorophore-labeled antibodies directed against surface (or occasionally, intracellular) markers. The population is analyzed as a group of individuals, making it possible to determine, for instance, how many CD4+ T-cells also express CD8. (Cell sorters operate via the same principle, but add the ability to collect specific cell populations of interest; BD Biosciences’ new Influx can sort up to six distinct populations.)

The basic experiment is simple enough to be learned in a day. But the devil is in the details, as they say, and there’s a reason experts like McClellan and Konz have jobs. It takes skill to align and maintain lasers, calibrate the system, prepare the samples, and analyze the data. Added colors only compound complexity, cont. on p. 854»

UPCOMING FEATURES
Apoptosis—December 3
Proteomics Meets Glycomics—January 7
Forensic Technologies—March 4
Both in experimental design and downstream data analysis. There are, for instance, literally hundreds of different 2D scatter plots one can generate from 16-color data, says Alan Saluk, director of the flow cytometry core at the Scripps Research Institute in La Jolla.

Instrument operation also takes finesse. They can, and often do, “gum up,” says Saluk. “Anyone can run a flow cytometer once it’s set up and working perfectly. The moment it does not work is when the expertise comes in,” he says.

All of which explains why, despite the excitement low-cost, turnkey systems like the C6 generate—certainly, a $44,000 cytometer can help democratize the field—many worry about the implications of putting these systems in the hands of people who are not properly trained to use them. Thirty-two-year flow cytometry veteran J. Paul Robinson, director of the Purdue University Cytometry Laboratories, is one such individual.

“I have no problem with the smaller instruments,” Robinson explains. “What I have a problem with is the implication that you don’t need to understand anything about the technology.” At best, he says, researchers may end up disappointed with their results; at worst, by improperly manipulating their data, they could commit “unintentional [scientific] fraud.”

His advice: Seek out an expert. “If you don’t understand a field, the smartest thing to do is work with someone who does and have them make sure that the designs of your experimental protocols are correct, that the data analysis is correct, and that what you report accurately reflects the biology,” he says. “If you don’t do that, then you open yourself up to error.”

COLORFUL CONUNDRUM

One such expert is Stanford University School of Medicine professor Garry Nolan. Nolan, who has been doing flow cytometry for 30 years, was a graduate student with industry pioneer Len Herzenberg. He recalls using a three-color instrument that is “literally in the Smithsonian Institution.”

Today’s flow cytometers have considerably more options than Nolan and Robinson had three decades ago—anything from simple one- or two-laser turnkey systems like the C6 and Stratedigm SE100, to high-end hot rods like the BD LSRRF Fortessa, an analyzer that can be configured with up to four lasers and 16 color channels. Beckman Coulter’s MoFlo XDP can sort based on up to 7 lasers and 27 colors at 200,000 cells per second, says Nigel Llewellyn-Smith, the company’s director for Strategic Marketing for flow cytometry reagents; the soon-to-be-released Astrios cell sorter will feature up to 49 colors. “We call it the mother of all sorters,” he says.

Most analyzers, though, are more modest affairs, a reflection of the fact that few researchers use more than between four and 10 colors at once; McClellan estimates that 95 percent of his facility’s business involves four or fewer colors, and 50 percent involves just one—researchers checking transfection efficiency of GFP, for instance. That said, six-to-10-color cyometry may be the new four, says Llewellyn-Smith, who estimates that 80 percent of researchers are working in that range, and that most of those “have graduated away from two, three, or four colors.” (Beckman Coulter’s new Gallois is a 10-color analyzer; Life Technologies’ Attune can handle six.)

In contrast, maybe just one or two percent of cytometrists use 23 colors, Llewellyn-Smith says, and it isn’t even physically possible today to do much more. That limitation is imposed by fluorescent dyes’ overlapping spectral signatures. It takes serious technical skill and time to assemble an antibody panel and “get everything copacetic,” says McClellan, even one as “small” as 12 colors. “You can’t just pick 12 different antibodies with 12 different fluorophores,” he explains. “Sometimes you get weird interactions.”

The typical approach is trial and error: be cautious in matching dyes to antibodies, use the right controls, and apply downstream compensation algorithms to subtract spectral bleedthrough. Compensation and autofluorescence, says Nolan, “are the two 800-pound gorillas in any flow facility.” In high-color experiments, he adds, “You can easily spend more time on [picking] fluorophores and compensation than on data analysis.”

Recently, though, Nolan has found a way to tackle 35-parameter experiments routinely that require no such spectral compensation, and 50-plex studies are in the works.

CyTOF TO THE RESCUE

Nolan’s group studies intracellular signaling pathways in immune cells and immunologic diseases. To get the global view of signaling events they want, they need to track 50 or so surface markers, plus another 80 intracellular ones, at the same time and under a variety of “perturbation” conditions. Clearly, a non-fluorescent approach is called for.

Enter CyTOF.

Developed by Ontario-based DVSciences, the CyTOF, says president and CEO Scott Tanner, is a “mass cytometer,” an ultrasensitive ICP-MS (inductively coupled plasma mass spectrometer) that interrogates cells not by their fluorescence, but by their atomic composition.

Relaying as it does on a 7000-Kelvin argon plasma stream that effectively cooks input samples into their most fundamental components, ICP-MS is almost never applied to fragile biological specimens, Tanner explains. Instead, it is typically used to measure, say, the level of arsenic in water or beryllium in nuclear fuel rods.

Yet the technology could be used for flow cytometry, Tanner saw, because it is relatively trivial for mass spectrometers to distinguish elements differing by just one mass unit. The key: swap fluorophores for metals.

DVS scientists developed a way to couple antibodies to metal chelators that can bind lanthanides like gadolinium and neodymium. Because the 13 lanthanides come in 37 isotopic flavors, says Tanner, “if you have a chemistry to bind one lanthanide to an antibody, you automatically have 37 different probes.” The company has developed and will shortly launch a second method to tag antibodies with noble metals such as iridium and palladium, increasing the multiplexing possibilities to 67.

The technology is “a true quantum step,” says Nolan, who, as an enthusiastic evangelist purchased the first commercial CyTOF and
plans to purchase several more. (Nolan has recently been added as an advisor to the company, and shortly will be joining its board of directors, says Tanner.)

“Some [researchers] can occasionally, by standing on their head, on a full moon, get 17 [colors] or so. But panel development takes months to get right,” Nolan says. “So imagine suddenly doubling that number, and you can design your panel the day before and be ready to go. You can imagine the excitement.”

His team is now applying the CyTOF to acquire “an ’omics level of understanding” of how individual cells can position themselves to respond so quickly to so many disparate stimuli. “With this device we’ve doubled the number of parameters compared to what had been accomplished in 30 years with traditional flow cytometry, and there are tricks we’ve thought up that will get us way beyond 100 [parameters],” he says.

Nolan’s enthusiasm notwithstanding, the CyTOF does have limitations, writes Howard Shapiro, author of Practical Flow Cytometry, in an e-mail. “Chief among them is its relative inefficiency in data collection.” According to Tanner, only about a third of introduced cells make it to the analyzer; the rest coat the walls of the chamber like the inside of a dirty oven. “This is a substantial liability when one attempts to deal with rare cell populations,” Shapiro notes. The system also can neither size cells nor measure their granularity, parameters measured in fluorescent instruments by forward and side scatter, respectively.

On the other hand, says Tanner, the CyTOF yields cleaner data than fluorescent instruments, because it requires no compensation in highly multiplexed experiments. “Compensation fuzzes the data,” Tanner says. “Intuitively, if you don’t do that you get better separation at low signal levels.” Those experiments also are far less expensive, Nolan adds, because they require less optimization.

That said, one task the CyTOF cannot do is sort—not surprising, given that the cells are charred to a crisp during the analysis. But Nolan apparently has come up with a workaround to that problem. “Talk to me in six months,” he says. “We’ve figured out how to do it absent a Star Trek reintegrator.”

LOCATION, LOCATION, LOCATION

Paul Smith, Professor of Cancer Biology at Cardiff University, and current president of the International Society for the Advancement of Cytometry, doesn’t have a CyTOF in his lab, but he does have access to an Accuri, a MoFlo, and a whole raft of BD hardware.

Despite the different brand names and capabilities, those systems all operate via the same principle and output the same data: fluorescent intensity and light scatter. Sometimes, though, a researcher wants a more nuanced perspective.

For that, Smith’s collaborators at Swansea University turn to the Amnis ImageStream, which, as its name suggests, adds a visual dimension to flow cytometry. “We use that because it’s one of the few instruments that allows us to actually verify that what we think is really happening, is happening,” he says.

The problem with most cytometers, explains Amnis CEO David Basiji, is that their output is just numbers; researchers cannot see what they are analyzing. Like the real estate mantra, location, location, location, sometimes a protein’s physical address is more important than whether or not it’s expressed. “In a standard flow cytometer all you get is intensity, not an image,” Basiji says.

From that perspective, the ImageStream offers the best of two worlds. Like the cross between a flow cytometer and a fluorescent microscope, the ImageStream rapidly images and interrogates cells as they file past a camera. The original ImageStream 100 collected up to six images per cell at 100 cells per second (five fluorescent plus brightfield and/or darkfield images); the newer ImageStreamX (launched in 2009) processes 1,000 cells per second and, with up to five lasers and two cameras, yields up to 12 images per cell.

“What the ImageStream can do, and other flow cytometers cannot, is provide low-resolution morphologic detail in addition to the whole cell fluorescence and scatter measurements conventionally associated with cytometry,” Shapiro says. “Its adherents are therefore investigators who need to localize fluorescently labeled targets within cells.”

Users can ask questions such as, in which cellular compartment is a given protein located? Or, has a marker of interest been internalized? Jonathan Katz of the Cincinnati Children’s Research Foundation, and colleagues, recently used an ImageStream to identify “the long-sought [antigen-presenting cell] responsible for breaking peripheral tolerance to cell [antigens] in vivo,” a key event underlying type-1 diabetes. Smith and his collaborators use the ImageStream to track asymmetric cell division in stem cells using quantum dot probes.

Flow cytometry, Smith says, “is a discipline rather than an engineering technology.” Yet it is a discipline driven by engineering. And that engineering is evolving. Many see Sony’s entry into the market—Smith says a harbinger of low-cost, point-of-care cytometers-on-a-chip based on the consumer giant’s Blu-Ray technology. “Change is coming,” says iCyt CEO Gary Durack. “There will be a change in this market, and I think the users of the technology are going to benefit dramatically.”

Never a dull moment, indeed.

Jeffrey M. Perkel is a freelance writer based in Pocatello, Idaho.
HIGH THROUGHPUT SCREENING

Designed to enable large scale, high throughput, high content screening, the HTFC Screening System takes a revolutionary approach to cell-based screening by integrating HyperCyt technology and flow cytometry—the most sensitive technology for measuring fluorescent markers on cells in suspension—with HyperCytPRO, an advanced server-based informatics platform. The result is a powerful yet simple screening system that enables researchers to cost effectively perform broader experiments with more controls and replicates, screen more compounds, and analyze data in ways never before possible with conventional flow cytometry. Using the HTFC Screening System, researchers can analyze multiparameter cell populations or multiplexed bead suspensions in 96- and 384-well microplates at rates up to 40 wells per minute, capturing data on thousands of cells per second. The heightened sensitivity and multicolor capabilities of the flow cytometer detection system also enable additional applications, including antibody screening, cytotoxicity studies, and biomarker analysis.

BENCHTOP FLOW CYTOMETERS

The new guava easyCyte family of compact, single-sampler systems allows scientists to move their research from the core lab into their own lab. The easyCyte instruments offer up to eight-parameter detection in a single-sampler format. Four guava easyCyte single-sampler models are available: two single-laser units capable of detecting five to six parameters and two dual-laser systems that can detect six to eight parameters. Dual lasers allow researchers greater flexibility in choosing different fluorescent dyes with well-separated emission spectra. The new instruments utilize patented microcapillary technology that reduces the number of cells needed for analysis and reduces the amount of waste generated—from liters per day with traditional approaches to less than 50 mL per day. Elimination of complicated fluidics gives guava instruments a small footprint and dramatically decreases user maintenance. EasyCyte flow cytometers feature InCyte software, which allows researchers to view, compare, and analyze up to six data sets simultaneously, enabling faster analysis of multiple cell populations or multicellular events.

EMD Millipore
For info: 800-645-5476 | www.millipore.com/easy

FLOW CYTOMETRY TUBES

Sarstedt introduces a 5 ml round base tube specifically designed for flow cytometry use. The tube features a modified 12x75 mm configuration for proper fit on most new flow cytometers and is manufactured from optically clear polystyrene. Tubes are packaged in convenient StackPacks for easy handling. Free samples are available upon request.

Sarstedt, Inc.
For info: 800-257-5101 | www.sarstedt.com

CELL SORTER

The new Influx Cell Sorting System can be configured with up to seven lasers to support two-way, four-way, and six-way sorting, giving researchers the flexibility to meet specific application or environmental requirements. The system’s modular architecture along with exchangeable detector options, hands-on controls, and sorting options make it adaptable to a wide variety of site and application needs. The Influx System uses parallel electronics to reach a throughput rate of 200,000 events per second, independent of the number of lasers or parameters. Its fluidics design features a special acoustical coupling in the nozzle assembly to reliably create droplets for sorting, while ensuring low shear stress to optimize cell viability, even at high pressures. FACS Accudrop technology simplifies setup and eliminates manual calculations normally required for drop-delay determination. To support aseptic sorting, the system’s disposable fluidics allows researchers to replace a sample line or the complete fluidics path from sheath tank to nozzle tip. In addition, the Influx software provides comprehensive control of the cell sorter from configuration and compensation setup to acquisition, sorting, and analysis. Software wizards and controls can assist researchers to classify cell populations, perform compensation, monitor sorting, and analyze results.

BD Biosciences

ANALYSIS SOFTWARE

The new flow cytometry analysis software, Kaluza 1.1, processes multicolor files of up to 10 million events in real time and offers an analytical speed that is dramatically faster than other commercially available software. With the cutting edge NVIDIA Tesla Supercomputer option, Kaluza 1.1 sets a new standard for flow cytometry data processing speed. The software supports data analysis from a variety of platforms, including MoFlo Series sorters, CyAn ADP and Gallios flow cytometry analyzers, and systems such as the iCys and the iCyte automated imaging cytometers. This version of Kaluza is the first software in the industry to be offered in a variety of translations. Kaluza Flow Cytometry Analysis Software version 1.1 is for research use only and is compatible with Windows XP, Windows Vista, and Windows 7 (32- and 64-bit) operating systems.

Beckman Coulter
For info: 800-526-3821 | www.kaluzasoftware.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information. Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
Biovelocity.

Create Knockout Rats and Mice in as few as 5 months

Learn More at Neuroscience 2010 Symposium

Title: Genetically Modified Rats in Neuroscience Research – Perspectives from the Field

Chair: Edward Weinstein, Ph.D.

Date: Tuesday, November 16, 2010

Time: 6:30 p.m. - 9:00 p.m.

Place: San Diego Convention Center, Room 2

Scientific Poster Presentations

<table>
<thead>
<tr>
<th>Poster No.</th>
<th>Title</th>
<th>Date and Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>Rat models to study genetic disorders of cognition and behavior</td>
<td>Nov 14, 8:00 a.m. - 12:00 p.m.</td>
</tr>
<tr>
<td>250</td>
<td>Knockout rat models for Parkinson’s disease</td>
<td>Nov 14, 1:00 - 5:00 p.m.</td>
</tr>
<tr>
<td>309</td>
<td>Knockout rat models for the study of Alzheimer’s disease</td>
<td>Nov 14, 1:00 - 5:00 p.m.</td>
</tr>
<tr>
<td>536</td>
<td>Creation of neurological rat models using zinc finger nucleases</td>
<td>Nov 16, 8:00 - 11:00 a.m.</td>
</tr>
<tr>
<td>766</td>
<td>Knockout rat models for schizophrenia and related disorders</td>
<td>Nov 17, 8:00 a.m. - 12:00 p.m.</td>
</tr>
<tr>
<td>780</td>
<td>Knockout rat models for the study of pain and sensorial systems</td>
<td>Nov 17, 8:00 a.m. - 12:00 p.m.</td>
</tr>
</tbody>
</table>

Stop by booth #3305 and visit us at wherebiobegins.com/sfn2010 for more information and to register for the symposium.
R&D Systems offers a wide range of high quality products for neuroscience research. In addition to high performance antibodies, we offer the most referenced collection of premium quality proteins and ELISA kits in the industry. Our catalog also includes primary rat and mouse cortical stem cells, and kits for the expansion, differentiation, and identification of neural stem cells.

For more information visit our website at www.RnDSystems.com/go/Neuroscience

For research use only. Not for use in diagnostic procedures.