Introducing BD FACSVerse™

What’s really exciting is what’s behind it.

The new BD FACSVerse™ flow cytometer is the latest in the family of high-performance analyzers that incorporates the best of our thinking and the very latest advances in technology to simplify your workflow today and tomorrow.

The innovations built into the new BD FACSVerse are on everyone’s wish list, from ingenious automation to unparalleled flexibility, so you can start strong today and grow tomorrow. Take a good look, there’s quite a lot to see.

For more information, please visit bdbiosciences.com/verse.

Simply brilliant.
Learn how current events are impacting your work.

ScienceInsider, the new policy blog from the journal *Science*, is your source for breaking news and instant analysis from the nexus of politics and science.

Produced by an international team of science journalists, ScienceInsider offers hard-hitting coverage on a range of issues including climate change, bioterrorism, research funding, and more.

Before research happens at the bench, science policy is formulated in the halls of government. Make sure you understand how current events are impacting your work. Read ScienceInsider today.

www.ScienceInsider.org

ScienceInsider
Breaking news and analysis from the world of science policy
Interdisciplinary Research
Symbiosis of Science and Technology

Yoshiyuki Sakaki, president of Toyohashi University of Technology, is energetic and engaging. In addition to his innovative style of university management, Sakaki is renowned for his internationally recognized contributions to molecular biology and his leadership as the head of the Japanese group in the Human Genome Project—launched in 1989, with a mandate to sequence the DNA, and map all of the genes, in the human genome. The project published the first draft of the results in 2000, ahead of schedule, followed by more detailed and complete data in 2003.

“It would not be an overstatement to say that the Human Genome Project was unprecedented and highly ambitious, as it was the largest international research project in the life sciences,” says Sakaki. “It is often called the Apollo project in life sciences. Our goal was to unravel the mysteries of the human genome; it was extremely challenging.”

Sakaki stresses the importance of the complementary nature of basic science and technology for the success of the project. “As a molecular biologist I am fully aware of the role that fundamental science and scientists played in the discovery of the molecular structure of DNA,” says Sakaki. “But the success of the genome project was made possible by the inspired engineers, who developed the technology that enabled the automated sequencing of the genome. Participation in the genome project taught me the importance of an appropriate mix of science and technology in modern research; the development of automated sequencing technology was a critical turning point in the genome project.”

The genome project consisted of an international consortium with teams based in United States, United Kingdom, Japan, Germany, France, and China. “Although this was a truly international project, I think it would be fair to say that we did wave our own national flags on certain occasions,” says Sakaki with a smile. “As leader of Japan’s team, my first challenge was recruiting key players with the appropriate skills to establish a large-scale data production pipeline. Luckily, I found an excellent applied chemist, a thoughtful molecular biologist, and an expert in bioinformatics. These three people played critical roles during the early days when we needed to extract and analyze large volumes of information. I am also indebted to the leaders of the USA and UK teams for their support and assistance during the project.”

Sakaki is applying his knowledge and experience as head of Japan’s team in the genome project to the administration of Toyohashi University of Technology, known colloquially as Toyohashi Tech. “One of my major goals as president is to build on the efforts of my predecessors, and continue to create infrastructure conducive to pursuing cutting-edge research,” says Sakaki. “I want our faculty to have the ambition and resources to compete with the world’s top researchers.” In the realm of education, Sakaki has launched programs to nurture engineers with creative and challenging minds capable of contributing to society on a global scale.

Toyohashi Tech is internationally acknowledged for research in microelectronics. “Our electronics-based research is the foundation for the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), which we launched in October 2010,” says Sakaki. Makoto Ishida, the director of EIIRIS, is also the inventor of the Toyohashi Probe Chip—an array of wire-like electrodes inserted into living cells to directly extract neuron signals. The probe array comprises vertically aligned silicon nanowires that have been integrated into silicon circuits through a vapor-liquid-solid growth process. The probe was recently used for measuring neural signals in the retina of a fish, which is the first major step for demonstrating the effectiveness of this technology (see figures on the opposite page).

More recently, Toyohashi Tech Professor Kazuaki Sawada developed another innovative piece of technology, a new pH image sensor. This charge-couple device-based imaging system enables real-time, two-dimensional visualization of changes in the distribution of protons and ions during, for example, stimulation of cells by external stimuli such as light and chemicals.

EIIRIS is building on the university’s history of research excellence in electronics, medical diagnostics, agriculture, and information communication technology. “Our goal is to open new frontiers in interdisciplinary research,” explains Sakaki. “EIIRIS is the flagship of interdisciplinary research at Toyohashi Tech.”

Director Ishida explains that the unique environment at EIIRIS was carefully planned to “encourage open discussion on topics ranging from molecular diagnostics to environmental monitoring, in order to tackle some of the daunting challenges of the 21st Century.”

Sakaki emphasizes the importance of the selecting highly ambitious research staff for EIIRIS. “In addition to funding for the building and infrastructure for EIIRIS, the Japanese Ministry of Education, Culture, Sports, Science and Technology, or MEXT, also supported the creation of a new tenured professorial chair at the institute,” says Sakaki. “And, we were delighted to have this chair filled by the multitalented Adarsh Sandhu, a bilingual physicist from the United Kingdom who researches...
About Toyohashi University of Technology

The university is located at the heart of Toyohashi City, Aichi Prefecture, in central Japan. The Pacific Ocean is only a short bicycle ride away from the Tempaku campus with the panoramic views of the surrounding mountains adding to its spectacular location. Toyohashi city has a mild climate, low cost of living, and is within easy reach of Nagoya, Tokyo, and Osaka.

The university has ~250 faculty and ~2200 full-time students (of whom 10% are from overseas, with the majority coming from Asia). Toyohashi Tech emphasizes practical training—including a two-month internship organized by the university with companies both in Japan and abroad.

Toyohashi Tech has eight research centers focusing on areas including intelligent sensing, robotics, agrotechnology, and optical information storage.

nanobiomagnetics and has 25 years of industrial and academic experience in Japan. He will play a central role as chief scientist in shaping the future of EIIRIS.”

The institute also houses an international team of 10 up-and-coming researchers—including Alexander Baryshev, one of three researchers from overseas, and Rika Numano, one of two female researchers—with diverse backgrounds including neuroscience, biotechnology, electromagnetism, robotics, and photonics. “In addition to pursuing their own research projects, these tenure-track researchers also mentor graduate assistant students assigned to the institute,” explains Vice President Yasuyoshi Inagaki, head of the Tenure Track Program. “These researchers must also lecture Toyohashi Tech students as part of the requirements for tenure positions.”

Excellence in research and education, international visibility, and industrial collaboration are some of the important goals for President Sakaki as he moves ahead with his plans for Toyohashi Tech—a university that not only has a student population similar in size to that of the California Institute of Technology (Caltech) in the United States, but one that also considers Caltech to be an excellent model for its future development.

“The university launched the Toyohashi Tech e-Newsletter (www.tut.ac.jp/english/newsletter/index.html), an online source of information about research, education, and events at Toyohashi Tech. The e-Newsletter is published quarterly and includes engaging content, images, and videos highlighting the university’s research and innovation.

Furthermore, the university will be hosting the inaugural Asia-Pacific Interdisciplinary Research Conference 2011 (AP-IRC 2011) on 17 and 18 November 2011 at the Tempaku campus. The AP-IRC 2011 will cover three main areas: electronics, life sciences, and green technology. The deadline for abstracts is 31 August 2011 and peer-reviewed papers will be published in the Institute of Physics’ Journal of Physics: Conference Series. “We hope that the interdisciplinary platform of the AP-IRC will act as a catalyst for graduate school students, academics, industrialists, and opinion leaders to find solutions to some of the major issues facing the world,” says Sakaki.

President Yoshiyuki Sakaki has a clear vision for the future of Toyohashi Tech. “I have had the opportunity of working with talented scientists, engineers, and administrators,” says Sakaki. “I have learned the importance of an interdisciplinary approach toward successful research. Also, I believe that the key to breakthroughs at universities, government institutes, and industrial labs does not depend on the size or even the location of such research centers. Rather, it depends on whether the research environment has the critical mix of expertise in fundamental science and fundamental technology. The symbiosis of science and technology is critical for the creation of new intelligence.”

Further Information
Ms. Junko Sugaya and Mr. Masashi Yamaguchi
International Affairs Division
TEL: (+81) 0532-44-2042; FAX: (+81) 0532-44-6557
E-mail: ryugaku@office.tut.ac.jp

Online Resources
Asia-Pacific Interdisciplinary Research Conference 2011
www.apirc.jp/index.html

Electronics-Inspired Interdisciplinary Research Institute (EIIRIS)
www.eiiris.tut.ac.jp/index.html

Toyohashi University of Technology website
www.tut.ac.jp/english/
Confidence comes with the right interactions.

Join leading scientists from academia and industry at Developments in Protein Interaction Analysis (DiPIA), November 12-15, Boston, Massachusetts, USA.

This scientific conference offers opportunities to meet and discuss the latest developments in label-free interaction and stability analysis using Biacore™ Surface Plasmon Resonance (SPR) and MicroCal™ microcalorimetry systems.

Register at www.gelifesciences.com/dipia
Join us for
Days of Molecular Medicine 2011

Re-engineering Regenerative Medicine

November 10-12
Hong Kong

Register today at dmm.aaas.org

Take advantage of this extraordinary opportunity to learn from, and network with, some of the world’s most influential researchers in regenerative medicine.

An international roster of leading tissue engineers and stem cell biologists, headlined by keynote speakers Fiona Watt and Molly Stevens, will discuss how to overcome barriers in translating new research advances into tangible clinical benefits.

Featured topics include:

- New strategies for engineering liver, skin and corneal tissues
- Neural stem cells and nervous system regeneration
- Stem cell therapies for treating heart disease
- Designing better biomaterials for engineering bone, cartilage and muscle
Dr. Carl Alving on his inspiration for inventing the vaccine patch.

"A dream told me to do it."

Carl R. Alving, M.D.
Chief of the Department of Adjuvant & Antigen Research,
Division of Retrovirology
at the Walter Reed Army Institute of Research
AAAS member

MemberCentral is the new website that looks at science through the eyes of AAAS members. It celebrates their achievements—like Dr. Alving’s vaccine patch—and their shared belief in the transformative power of science. Use MemberCentral to connect with other members, learn about work being done in other fields, and get fresh perspectives on issues ranging from speciation to STEM education.

Visit MemberCentral today and get to know the AAAS member community in a whole new way.

MemberCentral.aaas.org
Blogs | Videos | Webinars | Discounts | Downloads | Community
MINI CENTRIFUGE
The multiufuge Mini Centrifuge eliminates the need to change rotors when switching between microtubes and polymerase chain reaction (PCR) strips and provides twice the capacity of traditional mini centrifuges. The multiufuge features an innovative duoROTOR design that enables the simultaneous spinning of 12 microtubes and four PCR strips, which effectively doubles its capacity compared to most conventional mini centrifuges. With near silent operation and a fixed speed that produces 2,000 x g, the centrifuge is ideal for quick spin-downs. Simply close the lid and the unit quickly ramps up to 5,500 rpm; open the lid and the rotor quickly decelerates to enable removal of samples. The multiufuge can accommodate smaller 0.5- and 0.6-ml tubes and can also be used with low-cost optional adapters. At just 14 cm wide x 11 cm high and weighing 1.1 kg, the ultra-compact multiufuge is a truly personal-sized centrifuge that will fit on the smallest benchtop space, yet provides unmatched capacity and flexibility.
Clever Scientific
For info: +44-(0)-1788-565-300 | www.cleverscientific.com

STRAINER BAGS
The application range for Seward’s Strainer bags has been expanded to include sterile processing of tissue samples for primary cell preparation. Sterilized by gamma irradiation and available in a range of sizes, the Strainer bags are fully compatible with all laboratory paddle blenders, including Seward’s Stomacher 80 Biomaster range. As the Strainer bags are small, fully containable units which are easily used in a sterile environment, this has enabled new applications in cell culture. The 0.5 mm pore size of the integrated, robust strainer element within the Strainer bag generates a uniformly homogenous cell suspension. This allows the cells’ passage through the pores of the central straining matrix and prevents contamination with undigested extracellular material that can block pipettes. Produced to provide a sterile, secure environment for the preparation of single cell suspensions, the Strainer bag is ideal for individually processing a large number of samples.
Seward Limited
For info: 631-750-5660 | www.seward.co.uk

LDL CHOLESTEROL QUANTIFICATION ASSAY
The MaxDiscovery LDL Cholesterol Assay Kit is designed to simplify LDL cholesterol analysis in rodents. It uses extremely low sample sizes with only 2 µl of serum or plasma required for each reaction. The MaxDiscovery LDL Cholesterol Assay Kit is a simple, one-step, microplate-based method. The kit also offers high sensitivity and a low detection limit of 10 mg/dL. The MaxDiscovery LDL Cholesterol Assay Kit includes a control solution containing a LDL cholesterol standard that can be used to calibrate the assay and generate a standard curve. The small sample size and rapid, 10-minute assay make this kit ideal for research purposes.
Bio Scientific
For info: 888-208-2246 | www.bioscientific.com

LENTIVIRUS REPROGRAMMING KIT
The Human STEMCCA Lentivirus Reprogramming Kit generates induced pluripotent stem (iPS) cells from human adult cells more efficiently than previous methods. Because STEMCCA kits use a single lentiviral vector instead of four separate vectors, the kits reduce the number of viral integrations required for the derivation of iPS cells; increase reprogramming efficiency; and create more homogeneous, reproducible iPS cell populations. In addition, STEMCCA Cre-excisable kits allow for easy removal of the reprogramming vector, which has been shown to improve the developmental potential of iPS cells and significantly increase their capacity to undergo directed differentiation in vitro. The humanized version of the STEMCCA lentivirus expresses human Oct4, Klf4, Sox2, and c-Myc factors from a single polycistronic transcript. It can be used to reprogram normal or diseased postnatal human skin fibroblasts. Mouse STEMC-CA kits are available for reprogramming mouse and other rodent somatic cells.
EMD Millipore
For info: 800-645-5476 | www.millipore.com

COMPACT BALANCES
The durable and compact Core Compact Balances come in seven models and are designed for easy storage, making them perfect for the classroom setting. The battery and AC power supply also make them portable and useful for fieldwork. The Core is extremely affordable and comes with a large backlit digital display, color-coded keypad, and a removable stainless steel pan. Other useful features include full-range tare and dual tare keys, zero tracking, simple four-button operation, and external calibration. The Core offers overload protection in case of accidental overloading. The removable draft shield, available on most units, provides added stability and improves accuracy. The Core also has a security feature—a slot that allows the use of a standard Kensington-type lock and cable to prevent theft.
Adam Equipment
For info: 203-790-4774 | www.adamequipment.com

CHROMATIN IMMUNOPRECIPITATION ASSAY
The new Chromatin ImmunoPrecipitation assay (ChIP) kit contains 24 assays and is based upon the novel Chromatrap Pro-A ChIP technology. Chromatrap is a new technology that offers a quicker, easier, and more efficient way of undertaking chromatin immunoprecipitation assays. The new kits use revolutionary Chromatrap Pro-A spin columns that contain discs of an inert, porous polymer to which protein A has been covalently attached. During an assay, the chromatin/antibody complex is retained by the disc. Flushing with three buffers and an elution step are all that is required to obtain the DNA fragments of interest. The new Chromatrap spin column approach offers significant advantages compared to methods based on sepharose or magnetic beads, which involve many steps of separation, pipetting, and resuspension. The BioVyon protein A discs used in Chromatrap spin columns’ internal structure are composed of pores that have inner surfaces specifically designed to maximize chromatin capture efficiency.
Porvair Filtration Group
For info: +44-1489-864330 | www.chromatrap.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information. Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
We manage the most complex systems in the harshest environments. Keep supply chains humming in desert heat. Track maritime traffic on the worst seas. We’ve sent supplies to the space station. Put men on the Moon. And operated on Mars. Using innovative technologies, operations and logistics to pursue science to the extreme is all a question of how. And it is the how that Lockheed Martin delivers.
empowerment

n: fast, affordable amplicon sequencing

Take your sequencing to the next level

The Ion Personal Genome Machine™ sequencer bridges the gap between Sanger and next-generation sequencing. With Ion semiconductor sequencing, you can screen hundreds of amplicons over multiple samples in just two hours, for a fraction of the cost with most next-generation sequencers. Faster to results. Faster to publication. Imagine the possibilities.

Watch how it works at www.lifetechnologies.com/iondnaseqsci
Get the free mobile app for your phone at http://gettag.mobi

The Chip is the Machine™