The right forearm and hand (hand skeleton ~12.3 centimeters long) of Australopithecus sediba, specimen Malapa Hominin 2. Papers in this issue present a detailed look at the hands, feet, pelvis, brain endocast, and age of this hominid, which lived 2 million years ago, near the emergence of our genus, Homo.

See the series of Reports starting on p. 1402, News Focus package p. 1370, and www.sciencemag.org/extra/sediba.

Photo: Peter Schmid, courtesy of Lee Berger and the University of the Witwatersrand

CONTENTS continued >>

DEPARTMENTS
1357 This Week in Science
1360 Editors’ Choice
1362 Science Staff
1468 Gordon Research Conferences
1479 New Products
1480 Science Careers

www.sciencemag.org SCIENCE VOL 333 9 SEPTEMBER 2011 Published by AAAS
BREVIA

1401 A Gene for an Extended Phenotype
 K. Hoover et al.
 An insect virus gene controls the behavior of the dying host to increase dispersion of the virus.

REPORTS

1402 The Endocast of MH1, Australopithecus sediba
 K. J. Carlson et al.

1407 A Partial Pelvis of Australopithecus sediba
 J. M. Kibii et al.

1411 Australopithecus sediba Hand Demonstrates Mosaic Evolution of Locomotor and Manipulative Abilities
 T. L. Kivell et al.

1417 The Foot and Ankle of Australopithecus sediba
 B. Zipfel et al.

1421 Australopithecus sediba at 1.977 Ma and Implications for the Origins of the Genus Homo
 R. Pickering et al.
 Details of the hands, feet, pelvis, and brain of Australopithecus sediba show both primitive features and one derived toward those of Homo.
 >> News stories pp. 1370 and 1373; Science Podcast

1423 A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions
 D. W. Robbins and J. F. Hartwig
 A screening technique based on simple mass spectrometry measurements uncovers catalysts for organic coupling reactions.
 >> Perspective p. 1387

1427 Ice Flow of the Antarctic Ice Sheet
 E. Rignot et al.
 A high-resolution map of ice motion in Antarctica shows the details of ice movement in a warming climate.
 >> Perspective p. 1386

1430 Aeroelastic Flutter Produces Hummingbird Feather Songs
 C. J. Clark et al.
 Hummingbirds produce diverse courtship sounds by using resonantly fluttering tail feathers.

1434 Flight at Low Ambient Humidity Increases Protein Catabolism in Migratory Birds
 A. R. Gerson and C. G. Guglielmo
 Dry conditions during endurance flight increase rates of lean mass loss and protein catabolism in Swainson’s thrushes.

1436 Generation of Spatial Patterns Through Cell Polarity Switching
 S. Robinson et al.
 A few simple rules are sufficient to keep neighboring stomata at a safe distance from one another.

1440 X-ROS Signaling: Rapid Mechano-Chemo Transduction in Heart
 B. L. Prosser et al.
 Reactive oxygen species produced by NADPH oxidase link mechanical stretching to calcium signaling in mammalian myocytes.
 >> Perspective p. 1388

1445 Chromosome Organization by a Nucleoid-Associated Protein in Live Bacteria
 W. Wang et al.
 Super-resolution imaging in live Escherichia coli reveals protein clusters that sequester DNA loci and organize the chromosome.

1449 Ribosome Assembly Factors Prevent Premature Translation Initiation by 40S Assembly Intermediates
 B. S. Strunk et al.
 Ribosome assembly factors block multiple steps in translation initiation.

1453 Mutations in CIC and FUBP1 Contribute to Human Oligodendroglioma
 C. Bettegowda et al.
 A gene originally studied for its role in fruit fly embryogenesis is implicated in the growth of a common human brain tumor.

1456 Synaptic Pruning by Microglia Is Necessary for Normal Brain Development
 R. C. Paolicelli et al.
 A good brain needs a good vacuum cleaner.
 >> Perspective p. 1391

1458 Light-Induced Structural and Functional Plasticity in Drosophila Larval Visual System
 Q. Yuan et al.
 Postsynaptic plasticity participates in the adaptation of a sensory circuit to the environment.

1462 HCN2 Ion Channels Play a Central Role in Inflammatory and Neuropathic Pain
 E. C. Emery et al.
 Action potential firing, initiated by HCN2 ion channels, is the basic mechanism underlying neuropathic pain.

CONTENTS continued >>
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools
Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/333/6048

Permissions
Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl