Enhanced biological safety from BD Biosciences: Protecting personnel, products, and the environment.

Innovating for biological safety in flow cytometry.

Developed specifically for the BD FACS™ product platform, the BioProtect IV biological safety cabinet from the Baker Company provides efficient HEPA filtration and airflow control to maximize protection of the operator, the sample cells, product, and the environment.

A spacing-saving, accessible design simplifies installation, cleaning, and maintenance, and offers the operator a comfortable, ergonomic work environment, while reducing the risks of contamination from harmful agents.

Biological safety in flow cytometry is a growing issue for core laboratories and another reason you can depend on BD Biosciences to continually innovate to improve your workflow and your results. For more information on how your lab can enhance safety in flow cytometry, visit bdbiosciences.com/aria

BD flow cytometers are Class 1 Laser Products.
For Research Use Only. Not for use in diagnostic or therapeutic procedures.
BD, BD Logo and all other trademarks are property of Becton, Dickinson and Company. © 2011 BD
23-13488-00

BD Biosciences
2350 Qume Drive
San Jose, CA 95131
bdbiosciences.com
R&D Systems Specialized Tools for Cancer Research

Cancer is a disease of cellular dysfunction involving a range of biological activities that promote unregulated proliferation. To help advance the understanding of this complex disease, R&D Systems offers an expansive selection of quality products, including high performance antibodies, proteins, ELISAs, & arrays, for investigating various cancer-related factors. Every product from R&D Systems undergoes rigorous quality control testing to ensure industry leading reliability.

Angiogenesis
- Angiopoietin-2 (Catalog # AF623)
 Human Gastrointestinal Cancer Tissue

Epithelial to Mesenchymal Transition
- E-Cadherin (Catalog # AF648)
 Human Epidermoid Carcinoma Cells

Cancer Biomarkers
- BRCA1 (Catalog # MAB22101)
 Human Breast Cancer Tissue

Inflammation
- EMAP-II (Catalog # AF1910)
 Human Colon Cancer Tissue

Growth Factor/Receptor Signaling
- Proteome Profiler™ 96 Phospho-RTK Antibody Array (Catalog # ARZ001)
 MDA-MB-453 Cell Line

Cancer Stem Cells
- MagCellect CD24+CD44+ Breast Cancer Stem Cell Isolation Kit (Catalog # MAGH111)
 MCF-7 Cell Line

For more information visit our website at www.RnDSystems.com/go/Cancer

For research use only. Not for use in diagnostic procedures.
Kobe Biomedical Innovation Cluster at Port Island
From Rubble to Pioneering Research

Hiroo Imura is the president of the Foundation for Biomedical Research and Innovation and one of the chief scientific architects responsible for rebuilding Kobe after the 1995 earthquake that razed the port city to the ground. Professor Imura developed and oversaw a biomedically inspired strategy for rebuilding one of the most international cities in Japan, the success of which is exemplified by two prominent scientists, whose work is highlighted here, who relocated to Kobe’s Port Island to take advantage of its excellent research facilities.

A massive tremor measuring 7.3 on the Richter scale struck the port city of Kobe at 5:46 am on Tuesday 17 January 1995. The 20-second trembler—later named the Great Hanshin-Awaji Earthquake—killed over 4,000 people, displaced over 300,000 more from their homes, and caused damage estimated at over $100 billion. Global news coverage highlighted the resulting fires that destroyed the downtown and quayside, the destruction of the elevated Hanshin Expressway, and the sharp 1000-point drop in the Nikkei 225 stock market index. Kobe city planners were left with the formidable task of rebuilding Japan’s sixth-largest city.

FINDING A NEW DIRECTION

“Creating a blueprint for reconstructing Kobe was a daunting mission,” says Hiroo Imura, a medical doctor and president of the Foundation for Biomedical Research and Innovation (FBRI), who was one of the central figures given a mandate to rebuild the city. “At the time of the earthquake I was president of Kyoto University, and did not have any direct association with Kobe. However, in 1998 I was appointed director of Kobe City General Hospital, and it was at this time that Kobe city officials asked me for suggestions for the reconstruction. I decided to base the rebuilding of the city on biomedical research and industry because I was convinced that, at the time, Japan was behind the West in translational research in spite of having a rapidly aging society.”

In 1999, Imura proposed setting up an organization to link industry, government, and academic institutions to collaborate on clinical research and the development of medical devices for cutting-edge medical treatment. Imura’s ‘all Kansai plan’ received solid support from the deans of the medical schools at the universities of Kyoto, Osaka, and Kobe as well as the National Cardiovascular Center in Osaka and the Kobe Medical Association. Then in 2000, Imura established the FBRI and the Kobe Medical Industry Development Project to form the Kobe Biomedical Innovation Cluster (KBIC). Its mission was to revitalize Kobe’s economy, provide health care for the local community, and support the development of medical technology in Asia.

“The FBRI on Port Island has three main objectives,” explains Imura. “First, to support clinical trials for pharmaceutical research carried out at the Translational Research Informatics Center, where we have about 50 projects in progress. The second is to promote cutting-edge research on regenerative medicine being conducted at the RIKEN Center for Developmental Biology (CDB) and the KBIC; and the third, to conduct and support research on medical technologies being done by RIKEN, the KBIC, or other organizations.”

The complex also includes the Kobe City Medical Center General Hospital, which opened in July 2011 and offers researchers direct interaction with patients for a firsthand insight into ailments and the effectiveness of treatments. According to Imura, there are plans afoot to increase the number of hospitals at the cluster.

In addition to the government-funded research facilities operated by RIKEN, the cluster is also home to about 200 companies including Nippon Boehringer Ingelheim Co., Ltd. and Asubio Pharma Co., Ltd.

Imura notes that recent trends in the pharmaceutical industry indicate a move to relocate to growing markets, such as China. “Companies are prone to focus on the size of a market in a country, and have a tendency to overlook the importance of the depth of basic research there,” says Imura. “In Japan we have an excellent record of basic research in the life sciences. For example, Osaka University is renowned for immunology and nearby Kyoto University for the pioneering research performed by Shinya Yamanaka on induced pluripotent stem [IPS] cells.” Imura also emphasizes the importance of basic research into preemptive treatment for major diseases in Asia, such as diabetes.

“I hope that the successful rebuilding of Kobe in the form of the biomedical cluster on Port Island will inspire and give hope to other disaster-inflicted regions, including the Tohoku region of Japan,” says Imura.

ABOUT KOBE

Modern day Kobe, population ~1.5 million, is a port city located about 500 km west of Tokyo. Kobe is an international city with about 40,000 foreign residents from more than 100 countries. Its long history of internationalization is exemplified by the eight international schools, foreign industry, and wide selection of international culinary choices in areas such as the vibrant Sannomiya district of downtown Kobe.

Kobe is less than three hours from Tokyo and Nagoya by train and Sapporo by air. Kobe Airport is only 17 minutes from downtown, offering easy connections within Japan as well as international links via the nearby Kansai Airport.

Port Island at the Port of Kobe has excellent hotels, convention centers, and world-class universities. The Port Liner monorail system links Port Island and Kobe Airport to Sannomiya on the mainland.
CLEAR VISION: REGENERATIVE APPROACH FOR DEGENERATIVE RETINAL DISEASE

Masayo Takahashi is team leader at RIKEN’s Laboratory for Retinal Regeneration at the CDB. “After obtaining my M.D. and Ph.D. from Kyoto University and working at the ophthalmology department of Kyoto University Hospital, I went to the Salk Institute in 1996,” says Takahashi. “My stay at the Salk triggered my interest in the possibility of using stem cells for retinal degenerative diseases.”

Degenerative diseases of the retina—such as age-related macular degeneration—is the fourth largest cause of vision loss in the developed world, with associated health care costs of approximately $255 billion. “This is an unmet medical need,” explains Takahashi. “The worldwide pharmaceutical market alone is about $2.5 billion.”

On returning to Japan, Takahashi was able to successfully induce human embryonic stem (ES) cells and IPS cells to differentiate into photoreceptor cells, with the help of Dr. Sasai’s laboratory in the same institute. Takahashi and her group have also described the generation of IPS cells from the skin fibroblasts of retinitis pigmentosa patients, thereby opening the way for potential patient-based retinal therapy.

Takahashi stresses how important the facilities available at the KBIC are for her research. “Degenerative retinal disease research requires close collaboration between experts in a wide range of fields,” says Takahashi. “Here at the KBIC we have RIKEN’s CDB for regeneration of cells such as retinal pigment epithelium. Equally important is the nearby Kobe General Hospital and the Innovation Hospital, where I can actually meet and treat patients. This combination of basic research facilities and a top-class hospital has been critical for our clinical trials and translational research.”

Until Takahashi’s pioneering research using stem cells, regeneration of the retina in an adult was thought to be impossible. Now, the generation and the possibility of transplantation of retinal cells demonstrated by Takahashi and her colleagues gives hope to millions of patients worldwide suffering from degenerative retinal diseases.

In spite of recent successes, however, Takahashi cautions about over-hyping this type of therapy. “This treatment is still in its infancy,” says Takahashi. “Transplantation of generated cells does not lead to total recovery of vision yet; to achieve that we need to know more about the disease. But one thing is certain: Regenerative therapy of retinal degenerative disease is not a dream. It is a definite reality.”

SYSTEMS BIOLOGY: SLEEPING ON THE JOB

Advances in computer processing power and in technologies such as genome sequencing have enabled scientists to generate and analyze vast amounts of data in order to understand the complex interactions found in biological processes—a relatively new and intriguing area of research referred to as systems biology.

“Systems biology is an extension of molecular biology,” says Hiroki Ueda, head of the Laboratory for Systems Biology, at the CDB. “We could say it’s the biology that comes after the identification of key genes.”

Ueda, who has M.D. and Ph.D. degrees from the University of Tokyo, became leader of the laboratory in 2003, and head of the Functional Genomics Unit at the CDB in 2004. Ueda and his colleagues are developing concepts and strategies to address disorders related to “biological time,” such as sleep and circadian rhythms.

“Over the last few years we have focused our research on understanding dynamic biological systems, in particular the mammalian circadian clock,” says Ueda.

A deeper understanding of how the circadian clock functions is important because it governs metabolism and hormone cycles, and the malfunction of this system can lead to sleep disorders and depression. Ueda and colleagues are developing systems biology-based models to answer a number of questions, including elucidating the underlying mechanism of the circadian periodicity, how external stimuli such as light can affect the endogenous clock, the mechanism by which environmental temperature affects our internal clock, and how multiple cellular clocks are synchronized.

Ueda’s goal is to understand biological time and the unique facilities at CDB are a tremendous asset to achieve this goal. “I want to study time from the atomic to the macroscopic level,” says Ueda. “Here, we have experts from many different fields including mathematics, chemistry, and biology. We also have animal facilities and access to RIKEN’s new supercomputer, named ‘K,’ only one stop away on the monorail. This environment is highly conducive to cutting-edge research.”

Laboratory for Retinal Regeneration
www.riken.go.jp/engn/r-world/research/lab/cdb/retinal/index.html

Laboratory for Systems Biology, RIKEN CDB
http://www.cdb.riken.jp/lsb/index.html
Cytiva™ Cardiomyocytes

Relevant. Reliable. Confident.
A new era in safety screening with human cell models.

Cytiva Cardiomyocytes from GE Healthcare Life Sciences are derived from human embryonic stem (hES) cells and provide a biologically-relevant alternative to current cell models and primary cells, for predictive toxicity testing.

- Highly characterized
- Functionally verified
- Representative myocyte population
- Karyotype verified
- Scalable
- Cryopreserved for ease of use

www.gelifesciences.com/stemcells
GeneArt® gene synthesis, build your next breakthrough

Experience the new generation of gene synthesis and assembly tools

GeneArt® solutions give you predictability, adaptability, and confidence. Whether increasing protein expression rates as much as 100X or assembling genetic constructs with unprecedented precision, GeneArt® gene synthesis and assembly tools enable you to break through your most complex challenges.

Go to www.invitrogen.com/geneart

©2011 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. For research use only. Not intended for any animal or human therapeutic or diagnostic use. CO18747
Powered by semiconductor technology.
Propelled by a global community.

Get on the map with the Ion Personal Genome Machine™ (PGM™) Sequencer.

In just one year, throughput has increased 100-fold, sequencing readlength has doubled to 200 bp—recently topping 400 bp internally—and we’re on a path to clinical applications. We’ve also opened our protocols, datasets, and source code to the Ion Community—a network of scientists who are collaborating and developing applications. When the global community gets open access to transformative technology, you get a genomic revolution.

Watch the video at www.lifetechnologies.com/ionfirstyear/science
Register for your chance to win $1 million at www.lifetechnologies.com/grandchallenges
Our RabMAbs (Rabbit Monoclonal Antibodies) provide the combined benefits of superior antigen recognition of the rabbit immune system with the specificity and consistency of a monoclonal antibody, enabling the development of high quality phospho-specific antibodies. We have now generated more than 350 phospho-specific and activation-specific antibodies using our patented technology.

Why RabMAbs make better Phospho Antibodies:

Our RabMAbs (Rabbit Monoclonal Antibodies) provide the combined benefits of superior antigen recognition of the rabbit immune system with the specificity and consistency of a monoclonal antibody, enabling the development of high quality phospho-specific antibodies. We have now generated more than 350 phospho-specific and activation-specific antibodies using our patented technology.

Find out more @ www.epitomics.com/advantage

Western blot analysis on 3T3 cell lysates using anti-Phospho-Akt1 (pS473) RabMAb (Cat. #2118-1, 1:10,000 dilution). Cells were either (1) untreated or (2) treated with PDGF.

Immunohistochemical staining of breast adenocarcinoma tissue using anti-Phospho-EGFR (pY1086) RabMAb (Cat. #1727-1). Tissue was (A) phosphatase treated and (B) untreated.

SPECIAL OFFER

$99 ANTIBODY SPECIAL

Find out more @ www.epitomics.com/products/promo
AAAS is here – bringing educational infrastructure to the developing world.

AAAS is helping the Rwandan government rebuild its educational infrastructure as a way to help drive economic growth and development. By providing materials such as the Project 2061 Atlas of Science Literacy, lesson plans from Science NetLinks, and access to Science digital libraries, AAAS is helping the people of Rwanda work toward a future built around science and technology. As a AAAS member your dues support these efforts. If you’re not yet a AAAS member, join us. Together we can make a difference.

To learn more, visit aas.org/plusyou rwanda

Join us for

Days of Molecular Medicine 2011

Re-engineering Regenerative Medicine

November 10-12, Hong Kong

Take advantage of this extraordinary opportunity to learn from, and network with, some of the world’s most influential researchers in regenerative medicine.

An international roster of leading tissue engineers and stem cell biologists, headlined by keynote speakers Fiona Watt and Molly Stevens, will discuss how to overcome barriers in translating new research advances into tangible clinical benefits.

Featured topics include:

- New strategies for engineering liver, skin and corneal tissues
- Neural stem cells and nervous system regeneration
- Stem cell therapies for treating heart disease
- Designing better biomaterials for engineering bone, cartilage and muscle

Register today at dmm.aaas.org
The gel-free, blot-free, hands-free Simple Western is here.

proteinsimple™
simplewestern.com
Learn how current events are impacting your work.

ScienceInsider, the new policy blog from the journal Science, is your source for breaking news and instant analysis from the nexus of politics and science.

Produced by an international team of science journalists, ScienceInsider offers hard-hitting coverage on a range of issues including climate change, bioterrorism, research funding, and more.

Before research happens at the bench, science policy is formulated in the halls of government. Make sure you understand how current events are impacting your work. Read ScienceInsider today.

www.ScienceInsider.org
Working with precious and expensive samples requires your utmost concentration. The last thing you want to be thinking about or questioning is the reliability of the equipment you are using.

We offer you the perfect partnership!
Your priority is your sample; it’s our priority too. Let Eppendorf take care of your high-quality instrument needs; you take care of the research – it’s the perfect partnership! Eppendorf’s reliable and robust, versatile and intuitive products leave you free to concentrate on what really matters – your sample, your research, your results!

Hot offers, cool solutions for a variety of tasks!
Check out our new limited offers* on ThermoStat plus, Thermomixer comfort and refrigerated microcentrifuges 5418 R, 5424 R and 5430 R. To take advantage, contact your participating Eppendorf Partner today!

More product details and dealer contact information at www.eppendorf.com/advantage

* Savings compared to individual purchases at list prices. Promotion bundles available as long as supplies last.
AAAS Early Career Award for Public Engagement with Science

Nominations are open now through October 15 for the **AAAS Early Career Award for Public Engagement with Science**. With this award, AAAS recognizes early-career scientists and engineers who demonstrate excellence in their contribution to public engagement with science activities. The award recipient will receive a monetary prize of $5,000, a commemorative plaque, and complimentary registration and reimbursement of travel expenses to the 2012 AAAS Annual Meeting in Vancouver, B.C.

For eligibility information and instructions on submitting nominations, visit www.aaas.org/go/PESaward.

...how do **YOU** engage?
They say you never know when inspiration will strike. Download the *Science* mobile app for Android devices and be ready the next time you’re inspired to read the latest news, research, and career advice from *Science* on your mobile phone.

Features include:
- Summaries and abstracts from *Science, Science Translational Medicine, and Science Signaling.*
- Ability to e-mail full-text links.
- The latest news from *ScienceNOW.*
- Career advice articles from *Science Careers.*
- Access to the *Science* weekly podcast and other multimedia.
- Content caching for reading without wi-fi access.

To download the *Science* mobile app for Android visit content.aaas.org/mobile, visit the Android Market on your phone, or just scan this barcode.
NEW PRODUCTS

VACUUM PUMP
The Vacuubrand Vacuu•Lan Mini-Network provides distribution of vacuum from a single diaphragm vacuum pump (not included) to three vacuum ports with independent flow control. Integrated check valves isolate applications from each other to protect them from line fluctuations and resultant cross-contamination. Derived from Vacuubrand’s innovative Vacuu•Lan custom laboratory vacuum installations, the Mini-Network integrates three VCL01 flow control ports into a single bar suitable for easy installation into existing laboratories. The flow path is made from fluoropolymers and other corrosion-resistant materials, making it suitable for use in most standard laboratory applications. The Mini-Network comes with installed support rods for easy mounting on laboratory support frames or stands; alternately it can be wall mounted. Vacuum can be supplied via a quiet, oil-free Vacuubrand chemistry diaphragm vacuum pump, or any other similarly sized diaphragm pump.

BrandTech Scientific
For info: 888-522-2726 | www.brandtech.com

COLORED PROTEIN MARKERS
A new range of protein markers are ideal for verifying gel comparisons and monitoring electrophoresis separations. Designed to add color to comparisons and separations, CSL Pink Plus and Blue Wide Range Protein Markers can be supplied in standard and wide molecular weight ranges. Each protein marker is covalently bound to a pink or blue color chromophore, while different colored reference bands allow easy identification during electrophoresis and after transfer. The Pink Plus option is supplied as standard 10–175 kDa with three reference bands while the Blue Wide version is supplied as 10–245 kDa with two reference bands. The protein markers, which are supplied in loading buffer for convenient and immediate use, are visible in volumes as low as 3 µL per well and are stable for two years when stored at -20°C and three months at 4°C.

Cleaver Scientific
For info: +44-(0)-1788-565300 | www.cleaverscientific.com

qPCR ASSAYS
PrimeTime qPCR Assays are available in three different sizes (Mini, Standard, and XL) and provide the forward and reverse primers as well as a hydrolysis probe in a single tube. Primers and probes are also available separately, including the new Double-Quenched Probe, which increases accuracy and sensitivity through the incorporation of an internal ZEN quencher. As such, users are provided with an option to meet any experimental requirements. PrimeTime qPCR Assays allow users to select from multiple dye-quencher combinations as well as define primer:probe ratios to optimize experimental setup. Each oligo undergoes 100% QC by mass spectrometry and is shipped in two to four days of an order. PrimeTime offers Mini qPCR probes, which are ideal for gene expression screens and include a 5’ FAM and the option of a 3’ IBFQ quencher alone, or in combination with the internal ZEN quencher.

Integrated DNA Technologies
For info: 800-328-2661 | www.idtdna.com

BIOOLUMINESCENT HDAC ASSAYS
New, highly sensitive bioluminescent assays are available for the measurement of the relative activities of histone deacetylases (HDAC) for basic research, screening, and drug discovery. The HDAC-Glo and SIRT-Glo Assays and Screening Systems use a single-reagent-addition, add-mix-measure protocol for easy implementation in benchtop to high throughput screening applications. The systems speed up data acquisition times, and provide 10- to 100-fold higher sensitivity than comparable fluorescence assays. The HDAC-Glo Assay is broadly useful for class I and II HDAC enzymes in cells, cell extracts, or purified enzyme; the SIRT-Glo Assay is broadly useful for NAD+-dependent class III HDAC purified enzymes (Sirtuins or SIRTs). The assays use the Ultra-Glo recombinant firefly luciferase technology in an add-mix-measure format where the amount of light produced correlates to HDAC enzyme activity. The assays have broad linearity and high sensitivity, minimizing the amount of enzyme required and improving the limits of detection for screening applications.

Promega
For info: 800-356-9526 | www.promega.com

TISSUE PROCESSOR
The STP 420ES Tissue Processor is designed for high throughput tissue processing. This new tissue processor enables faster turnaround times for same-day diagnosis and leaner workflows through operational flexibility. Using a dual chamber design, which features unique rotational agitation that increases flow of traditional reagents by seven-fold to reduce processing times, the STP 420ES can process up to 420 cassettes per run. Holding 360 and 60 cassettes in the first and second chambers respectively, the second chamber allows independent processing of STAT samples, as well as special or difficult tissues, without disrupting routine workflow or requiring the use of a second instrument. By performing multiple runs per day and two protocols simultaneously, a laboratory using the STP 420ES can benefit from increased processing capacity and superior agitation with no additional capital expenditure.

Thermo Fisher Scientific
For info: 800-522-7270 | www.thermoscientific.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information. Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
Weekly Cell Signaling Journal from Science

Science Signaling

Online resources on cell signaling

Gain insight into the fast-paced research in cell signaling with original reviews and perspectives by leading researchers.

Stay abreast of the latest developments with summaries of the week’s hottest research and the nightly updated Virtual Journal, with primary research articles from 49 publishers.

Give your own research a boost with detailed protocols that guide you through the latest techniques.

Learn about the relationships controlling cell behavior from the Connections Maps pathways, a graphical interface into the Database of Cell Signaling, with information provided by cell signaling experts.

Stay ahead in this rapidly advancing, multidisciplinary field with custom alerts and personalization tools.

As a AAAS member, add Science Signaling access for over 60% off regular price. Subscribe in any of these ways:

- Go to sciencesignaling.org
- Call +1 202-326-6417
- Mail or fax this form with your payment to +1 202-842-1065

AAAS membership number required ______________________________

Nonmember price – US$156 online only;
US$465 print and online (add US$100 for non-US delivery)

Name __
Address ___
City ___
State/Province___________________________
Zip/Postal Code __________________________
Country ______________________________________
E-mail ___
Phone ___

Payment

☐ Check (payable to AAAS – Science Signaling)
Mail check and this form to:
AAAS
Attn: Membership Department
1200 New York Avenue, NW
Washington, DC 20005 USA

☐ Charge my:
☐ VISA ☐ MasterCard ☐ American Express

Card Number___
Expiration Date_______________________________________
Signature__
Date __

If paying by credit card, you may FAST FAX your order to +1 202-842-1065

Sitewide access available for your institution today. Contact sciencesignaling@aaas.org or call +1 866-265-4152

Now available in print edition!

Science Signaling

1200 New York Ave., NW • Washington, DC 20005 • +1 202-326-6417 • sciencesignaling.org
The new MISSION TRC 1.5 libraries cover over 20,000 human and mouse genes and contain 200,000 total shRNA clones. With 50,000 clones validated for gene knockdown, you can be confident in your results. Available as complete genome-wide arrayed or pooled libraries, or as custom panels and pools in Glycerol, DNA, and Lentiviral formats.

Perform the RNAi screen that fits your needs today

sigma.com/shrnalibrary